Возможная роль мутаций митохондриального генома при ишемической болезни сердца
https://doi.org/10.17650/1818-8338-2013-2-6-13
Аннотация
Митохондрии являются не только основными производителями аденозинтрифосфата, но и эндогенным источником активных форм кислорода. Митохондриальная дисфункция играет ключевую роль в запуске и прогрессировании атеросклеротического поражения. Нарушение функций митохондрий вследствие повышения в них уровня окисленных форм кислорода, накопления повреждений митохондриальной ДНК, истощения дыхательных цепей вызывает дисфункцию и апоптоз эндотелиальных клеток, активацию матриксных металлопротеиназ, рост сосудистых гладкомышечных клеток и их миграцию в интиму, экспрессию молекул адгезии и окисление липопротеинов низкой плотности. Митохондриальная дисфункция может быть важным объединяющим механизмом, объясняющим атерогенное действие основных факторов риска сердечно-сосудистых заболеваний. Небольшие клинические пилотные исследования показали ассоциацию различных мутаций митохондриального генома с атеросклеротическим поражением артерий. Учитывая появившиеся данные о возможной роли митохондрий в атерогенезе, в настоящее время ведутся разработки новых лекарственных препаратов, оказывающих влияние на функцию митохондрий.
Об авторах
Л. А. ЕгороваРоссия
М. В. Ежов
Россия
Г. М. Шиганова
Россия
А. Ю. Постнов
Россия
Список литературы
1. Sobenin I.A., Sazonova M.A., Ivanova M.M. et al. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One 2012;7(10):46573.
2. Anderson S., Bankier A.T., Barrell B.G. et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290(5806):457–65.
3. Camara A.K., Lesnefsky E.J., Stowe D.F. Potential therapeutic benefits of stretegies directed to mitochondria. Antioxid Redox Signal 2010;13(3):279–347.
4. Lenka N., Vijayasarathy C., Mullick J., Avadhani N.G. Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol 1998;61:309–44.
5. Ballinger S.W., Petterson C., Yan C.N. et al. Hydrogen peroxide- and peroxynitriteinduced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000;86(9):960–6.
6. Тодоров И.Н., Тодоров Г.И. Мультифакторная природа высокой частоты мутаций в мтДНК cоматических клеток млекопитающих. Биохимия 2009;74(9):1184–94.
7. Wallace D.C., Ye J.H., Neckelmann S.N. et al. Sequence analysis of cDNAs for the human and bovine ETP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 1987;12(2):81–90.
8. Kmiec B., Woloszynska M., Janska H. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 2006;50(3):149–59.
9. Wonnapinij P., Chinnery P.F., Samuels D.C. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet 2008;83(5):582–93.
10. Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 1997;13(11):450–5.
11. van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod Biomed Online 2008;16(4):553–69.
12. Cree L.M., Samuels D.C., de Sousa Lopes S.C. et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Net. Genet 2008;40(2):249–54.
13. Lenaz G., Genova M.L. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010;12(8):961–1008.
14. Waldmeier P.C. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog
15. Neuropsychopharmacol Biol Psychiatry 2003;27(2):303–21.
16. Fernandez-Moreno M.A., Bornstein В., Petit N., Garesse R. The pathophysiology of mitochondrial
17. biogenesis: towards four decades of mitochondrial DNA research. Mol Genet Metab 2000;71(3):481–95.
18. Dimauro S. Mitochondrial medicine. Biochim Biophys Acta 2004;1659 (2–3):107–14.
19. Irani K. Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 2000;87(3):179–83.
20. Dedkova E.N., Ji X., Lipsius S.L., Blatter L.A. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol 2004;286(2):C406–15.
21. Poteser M., Graziani A., Rosker C. et al. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3–TRPC4 heteromeric channels in endothelial cells. J Biol Chem 2006: 281(19):13588–95.
22. Spitaler M.M., Graier W.F. Vascular targets of redox signaling in diabetes mellitus. Diabetologia 2002;45(4):476–94.
23. Knight-Lozano C.A., Young C.G., Burow D.L. et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 2002;105(7):849–54.
24. Kelley D.E., He J., Menshikova E.V., Ritov V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51(10):2944–50.
25. Madamanchi N.R., Runge M.S. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007;100(4):460–73.
26. Puddu P., Puddu G.M., Galletti L. et al. Mitochondrial dysfunction as an initiating event in atherogenesis: а plausible hypothesis. Cardiology 2005;103(3):137–41.
27. Dai Y.L., Luk T.H., Siu C.W. et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol 2010;10(2):130–8.
28. Vaux D.L. Apoptogenic factors released from mitochondria. Biochim Biophys Acta 2011;1813(4):546–50.
29. Vindis C., Elbaz M., Escargueil-Blanc I. et al. Two distinct calcium-dependent mitochondrial pathways are involved in oxidized LDL-induced apoptosis. Arterioscler Thromb Vasc Biol 2005:25(3):639–45.
30. Gorenne I., Kavurma M., Scott S., Bennett M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc Res 2006;72(1):9–17.
31. Nakamura N., Hattori N., Tanaka M., Mizuno Y. Specific detection of deleted mitochondrial DNA by in situ hybridization using a chimera probe. Biochim Biophys Acta 1996;1308(3):215–21.
32. Botto N., Rizza A., Colombo M.G. et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res 2001;493(1–2):23–30.
33. Martinet W., Knaapen M.W., De Meyer G.R. et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002;20;106(8):927–32.
34. Ballinger S.W., Patterson C., Knight Lozano C.A. et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002;106(5):544–9.
35. Ballinger S.W. Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 2005;38(10):1278–95.
36. Harrison D., Griendling K.K., Landmesser U. et al. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003;91(3A):7A–11A.
37. Fearon I.M., Faux S.P. Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 2009;47(3):372–81.
38. Yao P.M., Tabas I. Free cholesterol loading of macrophages is associeted with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 2001;276(45):42468–76.
39. Raha S., Robinson B.H. Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 2001;106(1):62–70.
40. Fleming I., Mohamed A., Galle J. et al. Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha. Cardiovasc Res 2005;65(4):897–906.
41. Geng Y.J., Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 2002;22(9):1370–80.
42. Ward N.C., Croft K.D. Hypertension and oxidative stress. Clin Exp Pharmacol Physiol 2006;33(9):872–6.
43. Postnov Iu.V. The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkh Patol 2001;63(3):3–10.
44. Miró O., Alonso J.R., Jarreta D.et al. Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 1999;20(7):1331–6.
45. Andreassi M.G., Botto N., Colombo M.G. et al. Genetic instability and atherosclerosis: can somatic mutations account for the development of cardiovascular diseases? Environ Mol Mutagen 2000;35(4):265–9.
46. Pohjoismäki J.L., Goffart S., Taylor R.W. et al. Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One 2010;5(5):e10426.
47. Rorbach J., Yusoff A.A., Tuppen H. et al. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 2008;36(9):3065–74.
48. Bornstein B., Mas J.A., Patrono C. et al. Comparative analysis of the pathogenic mechanisms associated with the G8363A and A8296G mutations in the mitochondrial tRNA(Lys) gene. Biochem J 2005;387(Pt3):773–8.
49. Raha S., Merante F., Shoubridge E. et al. Repopulation of rho0 cells with mitochondria from a patient with a mitochondrial DNA point mutation in tRNA(Gly) results in respiratory chain dysfunction. Hum Mutat 1999;13(3):245–54.
50. Mimaki M., Ikota A., Seto A. et al. A double mutation (G11778A and G12192A) in mitochondrial DNA associated with Leber's hereditary optic neuropathy and cardiomyopathy. J Hum Genet 2003;48(1):47–50.
51. Chol M., Lebon S., Bénit P. et al. The mitochondrial DNA G13513A MELAS mutetion in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J Med Genet 2003;40(3):188–91.
52. Sazonova M., Budnikov E., Khasanova Z. et al. Studies of human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome. Atherosclerosis 2009;204(1):184–90.
53. Moraes C.T., Ciacci F., Bonilla E. et al. Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot? J Clin Invest 1993;92(2):2906–15.
54. Rossmanith W., Karwan R.M. Impairment of tRNA processing by point mutations in mitochondrial tRNA(Leu) (UUR) associated with mitochondrial diseases. FEBS Lett 1998;433(3):269–74.
55. Mueller E.E., Eder W., Ebner S. et al. The mitochondrial T16189C polymorphism is associated with coronary artery disease in Middle European populations. PLoS One 2011;6(1):e16455.
56. Piot C., Croisille P., Staat P. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 2008;359(5):473–81.
57. Mewton N., Croisille P., Gahide G. et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 2010;55(12):1200–5.
58. Rudolph V., Rudolph T.K., Schopfer F.J. et al. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc Res 2010;85(1):155–66.
59. Shiva S., Sack M.N., Greer J.J. et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 2007;204(9):2089–102.
60. Mureta M., Akao M., O’Rourke B., Marbоn E. Mitochondrial ETP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of
61. cardioprotection. Circ Res 2001;89(10):891–8.
62. Deja M.A., Malinowski M., Golba K.S. et al. Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac surgery: a double-blind randomized feasibility study of diazoxidesupplemented cardioplegia. J Thorac Cardiovasc Surg 2009;137(4):997–1004.
63. Yusuf S., Dagenais G., Pogue J. et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342(3):154–60.
64. Victor V.M., Rocha M., De la Fuente M. N-acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells. Free Radic Res 2003;37(9):919–29.
65. Victor V.M., Rocha M., Esplugues J.V., De la Fuente M. Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des 2005;11(24):3141–58.
66. Armstrong J.S. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 2007;151(8):1154–65.
67. Luk T.H., Dai Y.L., Siu C.W. et al. Habitual physical activity is associated with endothelial function and endothelial progenitor cells in patients with stable coronary artery disease. Eur J Cardiovasc Prev Rehabil 2009;16(4):464–71.
Рецензия
Для цитирования:
Егорова Л.А., Ежов М.В., Шиганова Г.М., Постнов А.Ю. Возможная роль мутаций митохондриального генома при ишемической болезни сердца. Клиницист. 2013;7(2):6-13. https://doi.org/10.17650/1818-8338-2013-2-6-13
For citation:
Egorova L.A., Ezhov M.V., Shiganova G.M., Postnov A.Yu. POSSIBLE ROLE OF MITOCHONDRIAL GENOME MUTATIONS IN CORONARY HEART DISEASE. The Clinician. 2013;7(2):6-13. (In Russ.) https://doi.org/10.17650/1818-8338-2013-2-6-13