Preview

Клиницист

Расширенный поиск

Нейродегенеративные заболевания и деменция – роль дисфункции гематоэнцефалического барьера (по материалам последних лет)

https://doi.org/10.17650/1818-8338-2025-19-1-K744

Аннотация

Представлены описание молекулярной архитектуры и физиологии гематоэнцефалического барьера (ГЭб), современные методы оценки состояния ГЭб, роль его дисфункции при некоторых нейродегенеративных заболеваниях, а также вклад сосудистой патологии. Обсуждаются патогенетические механизмы, с помощью которых нарушение ГЭб приводит к нейродегенерации. Ранняя диагностика при данных нозологиях имеет решающее значение для адекватной терапии и благоприятного прогноза. В связи с этим рассматривается возможность выявления нейровизуализационных паттернов, указывающих на нарушения проницаемости ГЭб, а также изучаются патологоанатомические характеристики дисфункции ГЭб.

Об авторах

О. С. Левин
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России; ГБУЗ г. Москвы «Московский многопрофильный научно-­клинический центр им. С.П. Боткина» Департамента здравоохранения г. Москвы
Россия

125993 Москва, ул. Баррикадная, 2/1, стр. 1,

125284 Москва, 2­й Боткинский пр­д, 5



З. К. Гехаева
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Зулихан Казбековна Гехаева 

125993 Москва, ул. Баррикадная, 2/1, стр. 1



Список литературы

1. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011;12(12):723–38. DOI: 10.1038/nrn3114

2. Zhao Z., Nelson A.R., Betsholtz C., Zlokovic B.V. Establishment and dysfunction of the blood-brain barrier. Cell 2015;163(5): 1064–78. DOI: 10.1016/j.cell.2015.10.067

3. Sweeney M.D., Ayyadurai S., Zlokovic B.V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2016;19(6):771–83. DOI: 10.1038/nn.4288

4. Mann G.E., Zlokovic B.V., Yudilevich D.L. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim Biophys Acta 1985;819(2):241–8. DOI: 10.1016/0005-2736(85)90179-8

5. Kisler K., Nelson A.R., Montagne A., Zlokovic B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017;18(7):419–34. DOI: 10.1038/nrn.2017.48

6. Iadecola C. The pathobiology of vascular dementia. Neuron 2013;80(4):844–66. DOI: 10.1016/j.neuron.2013.10.008

7. Левин О.С., Боголепова А.Н., Лобзин В.Ю. Общие механизмы патогенеза нейроденеративных и цереброваскулярных заболеваний и возможности их коррекции. Журнал неврологии и психиатрии им. С.С. Корсакова 2022;122(5):11–6. DOI: 10.17116/jnevro202212205111

8. Pardridge W.M. Targeted delivery of protein and gene medicines through the blood-brain barrier. Clin Pharmacol Ther 2015;97(4):347–61. DOI: 10.1002/cpt.18

9. Nguyen L.N., Ma D., Shui G. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014;509(7501):503–6. DOI: 10.1038/nature13241

10. Ben-Zvi A., Lacoste B., Kur E. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 2014;509(7501):507–11. DOI: 10.1038/nature13324

11. Mokgokong R., Wang S., Taylor C.J. et al. Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch 2014;466(5):887–901. DOI: 10.1007/s00424-013-1342-9

12. Abbott N.J., Patabendige A.A., Dolman D.E. et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37(1):13–25. DOI: 10.1016/j.nbd.2009.07.030

13. Vazana U., Veksler R., Pell G.S. et al. Glutamate-mediated bloodbrain barrier opening: implications for neuroprotection and drug delivery. J Neurosci 2016;36(29):7727–39. DOI: 10.1523/JNEUROSCI.0587-16.2016

14. Storck S.E., Meister S., Nahrath J. et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest 2016;126(1):123–36. DOI: 10.1172/JCI81108

15. Saito S., Ihara M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr Opin Psychiatry 2016;29(2):168–73. DOI: 10.1097/YCO.0000000000000239

16. Bakker E.N., Bacskai B.J., Arbel-Ornath M. et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 2016;36(2):181–94. DOI: 10.1007/s10571-015-0273-8

17. Aspelund A., Antila S., Proulx S.T. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212(7):991–9. DOI: 10.1084/jem.20142290

18. Louveau A., Smirnov I., Keyes T.J. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337–41. DOI: 10.1038/nature14432

19. Xie L., Kang H., Xu Q. et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342(6156):373–7. DOI: 10.1126/science.1241224

20. Reitsma S., Slaaf D.W., Vink H. et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007;454(3):345–59. DOI: 10.1007/s00424-007-0212-8

21. Reed M.J., Damodarasamy M., Banks W.A. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers 2019;7(4):1651157. DOI: 10.1080/21688370.2019.1651157

22. Iba T., Levy J.H. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost 2019;17(2):283–94. DOI: 10.1111/jth.14371

23. Becker B.F., Chappell D., Bruegger D. et al. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 2010;87(2):300–10. DOI: 10.1093/cvr/cvq137

24. Fels J., Jeggle P., Liashkovich I. et al. Nanomechanics of vascular endothelium. Cell Tissue Res 2014;355(3):727–37. DOI: 10.1007/s00441-014-1853-5

25. Schierke F., Wyrwoll M.J., Wisdorf M. et al. Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation. Sci Rep 2017;7:46476. DOI: 10.1038/srep46476

26. Wiesinger A., Peters W., Chappell D. et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013;8(11):e80905. DOI: 10.1371/journal.pone.0080905

27. Fels J., Kusche-Vihrog K. Endothelial nanomechanics in the context of endothelial (Dys)function and inflammation. Antioxid Redox Signal 2019;30(7):945–59. DOI: 10.1089/ars.2017.7327

28. Radeva M.Y., Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018;222(1). DOI: 10.1111/apha.12860

29. Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000;440(5):653–66. DOI: 10.1007/s004240000307

30. Ebong E.E., Lopez-Quintero S.V., Rizzo V. et al. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol (Camb) 2014;6(3):338–47. DOI: 10.1039/c3ib40199e

31. Ott I., Miyagi Y., Miyazaki K. et al. Reversible regulation of tissue factor-induced coagulation by glycosyl phosphatidylinositolanchored tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2000;20(3):874–82. DOI: 10.1161/01.atv.20.3.874

32. Shuvaev V.V., Tliba S., Nakada M. et al. Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide. J Pharmacol Exp Ther 2007;323(2):450–7. DOI: 10.1124/jpet.107.127126

33. Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol 2020;8:253. DOI: 10.3389/fcell.2020.00253

34. Sieve I., Münster-Kühnel A.K., Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol 2018;100:26–33. DOI: 10.1016/j.vph.2017.09.002

35. Nation D.A., Sweeney M.D., Montagne A. et al. Bloodbrain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019;25(2):270–6. DOI: 10.1038/s41591-018-0297-y

36. Erdő F., Denes L., de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: A review. J Cereb Blood Flow Metab 2017;37(1):4–24. DOI: 10.1177/0271678X16679420

37. Montagne A., Nation D.A., Pa J. et al. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol 2016;131(5):687–707. DOI: 10.1007/s00401-016-1570-0

38. Nelson A.R., Sweeney M.D., Sagare A.P., Zlokovic B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 2016;1862(5):887– 900. DOI: 10.1016/j.bbadis.2015.12.016

39. Montagne A., Barnes S.R., Sweeney M.D. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85(2):296–302. DOI: 10.1016/j.neuron.2014.12.032

40. Toledo J.B., Arnold S.E., Raible K. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013;136(Pt9):2697–706. DOI: 10.1093/brain/awt188

41. Добрынина Л.А., Шамтиева К.В., Кремнева Е.И. и др. Контролируемая артериальная гипертензия и повреждение гематоэнцефалического барьера у больных с возрастзависимой церебральной микроангиопатией и когнитивными нарушениями. Журнал неврологии и психиатрии им. С.С. Корсакова 2022;122(11):74–9. DOI: 10.17116/jnevro202212211174

42. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991;12(10):383–8. DOI: 10.1016/0165-6147(91)90609-v

43. Malek N., Lawton M.A., Swallow D.M. et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov Disord 2016;31(10):1518–26. DOI: 10.1002/mds.26698

44. Drouin-Ouellet J., Sawiak S.J., Cisbani G. et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 2015;78(2):160–77. DOI: 10.1002/ana.24406

45. Lin C.Y., Hsu Y.H., Lin M.H. et al. Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp Neurol 2013;250:20–30. DOI: 10.1016/j.expneurol.2013.08.019

46. Winkler E.A., Sengillo J.D., Sullivan J.S. et al. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 2013;125(1):111–20. DOI: 10.1007/s00401-012-1039-8

47. Winkler E.A., Nishida Y., Sagare A.P. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 2015;18(4):521–30. DOI: 10.1038/nn.3966

48. McDougal D.B., Ferrendelli J.A., Yip V. et al. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. Proc Natl Acad Sci USA 1990;87(4):1357–61. DOI: 10.1073/pnas.87.4.1357

49. Cunnane S., Nugent S., Roy M. et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011;27(1):3–20. DOI: 10.1016/j.nut.2010.07.021

50. Piert M., Koeppe R.A., Giordani B. et al. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med 1996;37(2):201–8.

51. Rokka J., Grönroos T.J., Viljanen T. et al. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1048:140–9. DOI: 10.1016/j.jchromb.2017.01.042

52. Simpson I.A., Chundu K.R., Davies-Hill T. et al. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 1994;35(5):546–51. DOI: 10.1002/ana.410350507

53. Barnes S.R., Ng T.S., Montagne A. et al. Optimal acquisition and modeling parameters for accurate assessment of low K trans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med 2016;75(5):1967–77. DOI: 10.1002/mrm.25793

54. Sagare A.P., Sweeney M.D., Makshanoff J., Zlokovic B.V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci Lett 2015;607:97–101. DOI: 10.1016/j.neulet.2015.09.025

55. Whitwell J.L., Dickson D.W., Murray M.E. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 2012;11(10):868–77. DOI: 10.1016/S1474-4422(12)70200-4

56. Gan J., Xu Z., Chen Z. et al. Blood-brain barrier breakdown in dementia with Lewy bodies. Fluids Barriers CNS 2024;21(1):73. DOI: 10.1186/s12987-024-00575-z

57. Brundel M., Heringa S.M., de Bresser J. et al. High prevalence of cerebral microbleeds at 7 Tesla MRI in patients with early Alzheimer’s disease. J Alzheimers Dis 2012;31(2):259–63. DOI: 10.3233/JAD-2012-120364

58. Shams S., Martola J., Granberg T. et al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis – the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015;36(4):661–6. DOI: 10.3174/ajnr.A4176

59. Yates P.A., Desmond P.M., Phal P.M. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 2014;82(14):1266–73. DOI: 10.1212/WNL.0000000000000285

60. Greenberg S.M., Vernooij M.W., Cordonnier C. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8(2):165–74. DOI: 10.1016/S1474-4422(09)70013-4

61. Viswanathan A., Greenberg S.M. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70(6):871–80. DOI: 10.1002/ana.22516

62. Feldman H.H., Maia L.F., Mackenzie I.R. et al. Superficial siderosis: a potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 2008;39(10):2894–7. DOI: 10.1161/STROKEAHA.107.510826

63. Charidimou A., Ni J., Martinez-Ramirez S. et al. Cortical superficial siderosis in Memory Clinic patients: further evidence for underlying cerebral amyloid angiopathy. Cerebrovasc Dis 2016;41(3–4):156–62. DOI: 10.1159/000442299

64. Blair G.W., Hernandez M.V., Thrippleton M.J. et al. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017;19(7):56. DOI: 10.1007/s11936-017-0555-1

65. Shams S., Wahlund L.O. Cerebral microbleeds as a biomarker in Alzheimer’s disease? A review in the field. Biomark Med 2016;10(1):9–18. DOI: 10.2217/bmm.15.101

66. Ham J.H., Yi H., Sunwoo M.K. et al. Cerebral microbleeds in patients with Parkinson’s disease. J Neurol 2014;261(8):1628–35. DOI: 10.1007/s00415-014-7403-y

67. Janelidze S., Lindqvist D., Francardo V. et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 2015;85(21):1834–42. DOI: 10.1212/WNL.0000000000002151

68. Cirrito J.R., Deane R., Fagan A.M. et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005;115(11):3285–90. DOI: 10.1172/JCI25247

69. Wang W., Bodles-Brakhop A.M., Barger S.W. A role for P-glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain. Curr Alzheimer Res 2016;13(6):615–20. DOI: 10.2174/1567205013666160314151012

70. Van Assema D.M., Lubberink M., Bauer M. et al. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 2012;135(Pt1):181–9. DOI: 10.1093/brain/awr298

71. Deo A.K., Borson S., Link J.M. et al. Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med 2014;55(7):1106–11. DOI: 10.2967/jnumed.113.130161

72. Kortekaas R., Leenders K.L., van Oostrom J.C. et al. Bloodbrain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005;57(2):176–9. DOI: 10.1002/ana.20369

73. Горина Я.В., Осипова Е.Д., Моргун А.В. и др. Аберрантный ангиогенез в ткани головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины 2020;19(4):46–52. DOI: 10.20538/1682-0363-2020-4-46-52

74. Sengillo J.D., Winkler E.A., Walker C.T. et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 2013;23(3):303–10. DOI: 10.1111/bpa.12004

75. Halliday M.R., Rege S.V., Ma Q. et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 2016;36(1):216–27. DOI: 10.1038/jcbfm.2015.44

76. Wu Z., Guo H., Chow N. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005;11(9):959–65. DOI: 10.1038/nm1287

77. Bell R.D., Winkler E.A., Sagare A.P. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68(3):409–27. DOI: 10.1016/j.neuron.2010.09.043

78. Pienaar I.S., Lee C.H., Elson J.L. et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis 2015;74:392–405. DOI: 10.1016/j.nbd.2014.12.006

79. Kwan J.Y., Jeong S.Y., Van Gelderen P. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 2012;7(4):e35241. DOI: 10.1371/journal.pone.0035241

80. Garbuzova-Davis S., Hernandez-Ontiveros D.G., Rodrigues M.C. et al. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res 2012;1469:114–28. DOI: 10.1016/j.brainres.2012.05.056

81. Miners J.S., Schulz I., Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab 2018;38(1):103–15. DOI: 10.1177/0271678X17690761

82. Armulik A., Genové G., Mäe M. et al. Pericytes regulate the bloodbrain barrier. Nature 2010;468(7323):557–61. DOI: 10.1038/nature09522

83. Sagare A.P., Bell R.D., Zhao Z. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 2013;4:2932. DOI: 10.1038/ncomms3932

84. Gerrits E., Giannini L.A.A., Brouwer N. et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022;25(8):1034–48. DOI: 10.1038/s41593-022-01124-3

85. Cullen K.M., Kócsi Z., Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 2005;25(12):1656–67. DOI: 10.1038/sj.jcbfm.9600155

86. Bell R.D., Winkler E.A., Singh I. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012;485(7399):512–6. DOI: 10.1038/nature11087

87. Gray M.T., Woulfe J.M. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015;35(5): 747–50. DOI: 10.1038/jcbfm.2015.32

88. Zenaro E., Pietronigro E., Della Bianca V. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015;21(8):880–6. DOI: 10.1038/nm.3913

89. Fiala M., Liu Q.N., Sayre J. et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur J Clin Invest 2002;32(5):360–71. DOI: 10.1046/j.1365-2362.2002.00994.x

90. Donahue J.E., Flaherty S.L., Johanson C.E. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 2006;112(4):405–15. DOI: 10.1007/s00401-006-0115-3

91. Sagare A.P., Deane R., Zlokovic B.V. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012;136(1):94–105. DOI: 10.1016/j.pharmthera.2012.07.008

92. DeMattos R.B., Bales K.R., Cummins D.J. et al. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 2002;295(5563):2264–7. DOI: 10.1126/science.1067568

93. DeMattos R.B., Bales K.R., Cummins D.J. et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2001;98(15):8850–5. DOI: 10.1073/pnas.151261398

94. Deane R., Singh I., Sagare A.P. et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012;122(4):1377–92. DOI: 10.1172/JCI58642

95. 2-Year extension study of azeliragon in subjects with Alzheimer’s disease (STEADFAST Extension) US National Library of Medicine. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02916056

96. Zeuzem S., Flisiak R., Vierling J.M. et al. Randomised clinical trial: alisporivir combined with peginterferon and ribavirin in treatmentnaïve patients with chronic HCV genotype 1 infection (ESSENTIAL II). Aliment Pharmacol Ther 2015;42(7):829–44. DOI: 10.1111/apt.13342

97. Teng H., Li C., Zhang Y. et al. Therapeutic effect of Cerebrolysin on reducing impaired cerebral endothelial cell permeability. Neuroreport 2021;32(5):359–66. DOI: 10.1097/WNR.0000000000001598

98. Zhang Y., Chopp M., Meng Y. et al. Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J Neurosurg 2013;118(6):1343–55. DOI: 10.3171/2013.3.JNS122061

99. Zhong Z., Ilieva H., Hallagan L. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest 2009;119(11):3437–49. DOI: 10.1172/JCI38476

100. Calderón-Garcidueñas L., Vojdani A., Blaurock-Busch E. et al. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J Alzheimers Dis 2015;43(3):1039–58. DOI: 10.3233/JAD-141365


Рецензия

Для цитирования:


Левин О.С., Гехаева З.К. Нейродегенеративные заболевания и деменция – роль дисфункции гематоэнцефалического барьера (по материалам последних лет). Клиницист. 2025;19(1):74-84. https://doi.org/10.17650/1818-8338-2025-19-1-K744

For citation:


Levin O.S., Gekhaeva Z.K. Neurodegenerative diseases and dementia: the role of blood-brain barrier dysfunction (based on recent evidence). The Clinician. 2025;19(1):74-84. (In Russ.) https://doi.org/10.17650/1818-8338-2025-19-1-K744

Просмотров: 23


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-8338 (Print)
ISSN 2412-8775 (Online)