Neurodegenerative diseases and dementia: the role of blood-brain barrier dysfunction (based on recent evidence)
https://doi.org/10.17650/1818-8338-2025-19-1-K744
Abstract
The review describes the molecular architecture and physiology of the blood-brain barrier (BBB), modern methods for assessing the condition of the BBB, the role of its dysfunction in some neurodegenerative diseases, and the contribution of vascular pathology. The pathogenetic mechanisms by which violation of BBB leads to neurodegeneration are discussed. Early diagnosis in these nosologies is crucial for adequate therapy and a favorable prognosis. In this regard, the possibility of identifying neuroimaging patterns indicating violations of BBB permeability is being considered, and the pathoanatomical characteristics of BBB dysfunction are also being studied.
About the Authors
O. S. LevinRussian Federation
Build. 1, 2/1 Barrikadnaya St., Moscow 125993,
5 2 nd Botkinskiy Proezd, Moscow 125284
Z. K. Gekhaeva
Russian Federation
Zulikhan Kazbekovna Gekhaeva
Build. 1, 2/1 Barrikadnaya St., Moscow 125993
References
1. Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011;12(12):723–38. DOI: 10.1038/nrn3114
2. Zhao Z., Nelson A.R., Betsholtz C., Zlokovic B.V. Establishment and dysfunction of the blood-brain barrier. Cell 2015;163(5): 1064–78. DOI: 10.1016/j.cell.2015.10.067
3. Sweeney M.D., Ayyadurai S., Zlokovic B.V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2016;19(6):771–83. DOI: 10.1038/nn.4288
4. Mann G.E., Zlokovic B.V., Yudilevich D.L. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim Biophys Acta 1985;819(2):241–8. DOI: 10.1016/0005-2736(85)90179-8
5. Kisler K., Nelson A.R., Montagne A., Zlokovic B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017;18(7):419–34. DOI: 10.1038/nrn.2017.48
6. Iadecola C. The pathobiology of vascular dementia. Neuron 2013;80(4):844–66. DOI: 10.1016/j.neuron.2013.10.008
7. Levin O.S., Bogolepova A.N., Lobzin V.Yu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry 2022;122(5):11–6. (In Russ.). DOI: 10.17116/jnevro202212205111
8. Pardridge W.M. Targeted delivery of protein and gene medicines through the blood-brain barrier. Clin Pharmacol Ther 2015;97(4):347–61. DOI: 10.1002/cpt.18
9. Nguyen L.N., Ma D., Shui G. et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014;509(7501):503–6. DOI: 10.1038/nature13241
10. Ben-Zvi A., Lacoste B., Kur E. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 2014;509(7501):507–11. DOI: 10.1038/nature13324
11. Mokgokong R., Wang S., Taylor C.J. et al. Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch 2014;466(5):887–901. DOI: 10.1007/s00424-013-1342-9
12. Abbott N.J., Patabendige A.A., Dolman D.E. et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37(1):13–25. DOI: 10.1016/j.nbd.2009.07.030
13. Vazana U., Veksler R., Pell G.S. et al. Glutamate-mediated bloodbrain barrier opening: implications for neuroprotection and drug delivery. J Neurosci 2016;36(29):7727–39. DOI: 10.1523/JNEUROSCI.0587-16.2016
14. Storck S.E., Meister S., Nahrath J. et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest 2016;126(1):123–36. DOI: 10.1172/JCI81108
15. Saito S., Ihara M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr Opin Psychiatry 2016;29(2):168–73. DOI: 10.1097/YCO.0000000000000239
16. Bakker E.N., Bacskai B.J., Arbel-Ornath M. et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 2016;36(2):181–94. DOI: 10.1007/s10571-015-0273-8
17. Aspelund A., Antila S., Proulx S.T. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212(7):991–9. DOI: 10.1084/jem.20142290
18. Louveau A., Smirnov I., Keyes T.J. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337–41. DOI: 10.1038/nature14432
19. Xie L., Kang H., Xu Q. et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342(6156):373–7. DOI: 10.1126/science.1241224
20. Reitsma S., Slaaf D.W., Vink H. et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007;454(3):345–59. DOI: 10.1007/s00424-007-0212-8
21. Reed M.J., Damodarasamy M., Banks W.A. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers 2019;7(4):1651157. DOI: 10.1080/21688370.2019.1651157
22. Iba T., Levy J.H. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost 2019;17(2):283–94. DOI: 10.1111/jth.14371
23. Becker B.F., Chappell D., Bruegger D. et al. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 2010;87(2):300–10. DOI: 10.1093/cvr/cvq137
24. Fels J., Jeggle P., Liashkovich I. et al. Nanomechanics of vascular endothelium. Cell Tissue Res 2014;355(3):727–37. DOI: 10.1007/s00441-014-1853-5
25. Schierke F., Wyrwoll M.J., Wisdorf M. et al. Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation. Sci Rep 2017;7:46476. DOI: 10.1038/srep46476
26. Wiesinger A., Peters W., Chappell D. et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013;8(11):e80905. DOI: 10.1371/journal.pone.0080905
27. Fels J., Kusche-Vihrog K. Endothelial nanomechanics in the context of endothelial (Dys)function and inflammation. Antioxid Redox Signal 2019;30(7):945–59. DOI: 10.1089/ars.2017.7327
28. Radeva M.Y., Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018;222(1). DOI: 10.1111/apha.12860
29. Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000;440(5):653–66. DOI: 10.1007/s004240000307
30. Ebong E.E., Lopez-Quintero S.V., Rizzo V. et al. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol (Camb) 2014;6(3):338–47. DOI: 10.1039/c3ib40199e
31. Ott I., Miyagi Y., Miyazaki K. et al. Reversible regulation of tissue factor-induced coagulation by glycosyl phosphatidylinositolanchored tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2000;20(3):874–82. DOI: 10.1161/01.atv.20.3.874
32. Shuvaev V.V., Tliba S., Nakada M. et al. Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide. J Pharmacol Exp Ther 2007;323(2):450–7. DOI: 10.1124/jpet.107.127126
33. Möckl L. The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front Cell Dev Biol 2020;8:253. DOI: 10.3389/fcell.2020.00253
34. Sieve I., Münster-Kühnel A.K., Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol 2018;100:26–33. DOI: 10.1016/j.vph.2017.09.002
35. Nation D.A., Sweeney M.D., Montagne A. et al. Bloodbrain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 2019;25(2):270–6. DOI: 10.1038/s41591-018-0297-y
36. Erdő F., Denes L., de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: A review. J Cereb Blood Flow Metab 2017;37(1):4–24. DOI: 10.1177/0271678X16679420
37. Montagne A., Nation D.A., Pa J. et al. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol 2016;131(5):687–707. DOI: 10.1007/s00401-016-1570-0
38. Nelson A.R., Sweeney M.D., Sagare A.P., Zlokovic B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 2016;1862(5):887– 900. DOI: 10.1016/j.bbadis.2015.12.016
39. Montagne A., Barnes S.R., Sweeney M.D. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85(2):296–302. DOI: 10.1016/j.neuron.2014.12.032
40. Toledo J.B., Arnold S.E., Raible K. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013;136(Pt9):2697–706. DOI: 10.1093/brain/awt188
41. Dobrynina L.A., Shamtieva K.V., Kremneva E.I. et al. Controlled arterial hypertension and blood-brain barrier damage in patients with age-related cerebral small vessel disease and cognitive impairments. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry 2022;122(11): 74–9. (In Russ.). DOI: 10.17116/jnevro202212211174
42. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991;12(10):383–8. DOI: 10.1016/0165-6147(91)90609-v
43. Malek N., Lawton M.A., Swallow D.M. et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov Disord 2016;31(10):1518–26. DOI: 10.1002/mds.26698
44. Drouin-Ouellet J., Sawiak S.J., Cisbani G. et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 2015;78(2):160–77. DOI: 10.1002/ana.24406
45. Lin C.Y., Hsu Y.H., Lin M.H. et al. Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp Neurol 2013;250:20–30. DOI: 10.1016/j.expneurol.2013.08.019
46. Winkler E.A., Sengillo J.D., Sullivan J.S. et al. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 2013;125(1):111–20. DOI: 10.1007/s00401-012-1039-8
47. Winkler E.A., Nishida Y., Sagare A.P. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 2015;18(4):521–30. DOI: 10.1038/nn.3966
48. McDougal D.B., Ferrendelli J.A., Yip V. et al. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. Proc Natl Acad Sci USA 1990;87(4):1357–61. DOI: 10.1073/pnas.87.4.1357
49. Cunnane S., Nugent S., Roy M. et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011;27(1):3–20. DOI: 10.1016/j.nut.2010.07.021
50. Piert M., Koeppe R.A., Giordani B. et al. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med 1996;37(2):201–8.
51. Rokka J., Grönroos T.J., Viljanen T. et al. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1048:140–9. DOI: 10.1016/j.jchromb.2017.01.042
52. Simpson I.A., Chundu K.R., Davies-Hill T. et al. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 1994;35(5):546–51. DOI: 10.1002/ana.410350507
53. Barnes S.R., Ng T.S., Montagne A. et al. Optimal acquisition and modeling parameters for accurate assessment of low K trans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med 2016;75(5):1967–77. DOI: 10.1002/mrm.25793
54. Sagare A.P., Sweeney M.D., Makshanoff J., Zlokovic B.V. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci Lett 2015;607:97–101. DOI: 10.1016/j.neulet.2015.09.025
55. Whitwell J.L., Dickson D.W., Murray M.E. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol 2012;11(10):868–77. DOI: 10.1016/S1474-4422(12)70200-4
56. Gan J., Xu Z., Chen Z. et al. Blood-brain barrier breakdown in dementia with Lewy bodies. Fluids Barriers CNS 2024;21(1):73. DOI: 10.1186/s12987-024-00575-z
57. Brundel M., Heringa S.M., de Bresser J. et al. High prevalence of cerebral microbleeds at 7 Tesla MRI in patients with early Alzheimer’s disease. J Alzheimers Dis 2012;31(2):259–63. DOI: 10.3233/JAD-2012-120364
58. Shams S., Martola J., Granberg T. et al. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis – the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015;36(4):661–6. DOI: 10.3174/ajnr.A4176
59. Yates P.A., Desmond P.M., Phal P.M. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 2014;82(14):1266–73. DOI: 10.1212/WNL.0000000000000285
60. Greenberg S.M., Vernooij M.W., Cordonnier C. et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8(2):165–74. DOI: 10.1016/S1474-4422(09)70013-4
61. Viswanathan A., Greenberg S.M. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70(6):871–80. DOI: 10.1002/ana.22516
62. Feldman H.H., Maia L.F., Mackenzie I.R. et al. Superficial siderosis: a potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 2008;39(10):2894–7. DOI: 10.1161/STROKEAHA.107.510826
63. Charidimou A., Ni J., Martinez-Ramirez S. et al. Cortical superficial siderosis in Memory Clinic patients: further evidence for underlying cerebral amyloid angiopathy. Cerebrovasc Dis 2016;41(3–4):156–62. DOI: 10.1159/000442299
64. Blair G.W., Hernandez M.V., Thrippleton M.J. et al. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017;19(7):56. DOI: 10.1007/s11936-017-0555-1
65. Shams S., Wahlund L.O. Cerebral microbleeds as a biomarker in Alzheimer’s disease? A review in the field. Biomark Med 2016;10(1):9–18. DOI: 10.2217/bmm.15.101
66. Ham J.H., Yi H., Sunwoo M.K. et al. Cerebral microbleeds in patients with Parkinson’s disease. J Neurol 2014;261(8):1628–35. DOI: 10.1007/s00415-014-7403-y
67. Janelidze S., Lindqvist D., Francardo V. et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 2015;85(21):1834–42. DOI: 10.1212/WNL.0000000000002151
68. Cirrito J.R., Deane R., Fagan A.M. et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005;115(11):3285–90. DOI: 10.1172/JCI25247
69. Wang W., Bodles-Brakhop A.M., Barger S.W. A role for P-glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain. Curr Alzheimer Res 2016;13(6):615–20. DOI: 10.2174/1567205013666160314151012
70. Van Assema D.M., Lubberink M., Bauer M. et al. Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 2012;135(Pt1):181–9. DOI: 10.1093/brain/awr298
71. Deo A.K., Borson S., Link J.M. et al. Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med 2014;55(7):1106–11. DOI: 10.2967/jnumed.113.130161
72. Kortekaas R., Leenders K.L., van Oostrom J.C. et al. Bloodbrain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005;57(2):176–9. DOI: 10.1002/ana.20369
73. Gorina Ya.V., Osipova E.D., Morgun A.V. et al. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Byulleten’ sibirskoy meditsiny = Bulletin of Siberian Medicine 2020;19(4):46–52. (In Russ.). DOI: 10.20538/1682-0363-2020-4-46-52
74. Sengillo J.D., Winkler E.A., Walker C.T. et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 2013;23(3):303–10. DOI: 10.1111/bpa.12004
75. Halliday M.R., Rege S.V., Ma Q. et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 2016;36(1):216–27. DOI: 10.1038/jcbfm.2015.44
76. Wu Z., Guo H., Chow N. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005;11(9):959–65. DOI: 10.1038/nm1287
77. Bell R.D., Winkler E.A., Sagare A.P. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68(3):409–27. DOI: 10.1016/j.neuron.2010.09.043
78. Pienaar I.S., Lee C.H., Elson J.L. et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis 2015;74:392–405. DOI: 10.1016/j.nbd.2014.12.006
79. Kwan J.Y., Jeong S.Y., Van Gelderen P. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 2012;7(4):e35241. DOI: 10.1371/journal.pone.0035241
80. Garbuzova-Davis S., Hernandez-Ontiveros D.G., Rodrigues M.C. et al. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res 2012;1469:114–28. DOI: 10.1016/j.brainres.2012.05.056
81. Miners J.S., Schulz I., Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. J Cereb Blood Flow Metab 2018;38(1):103–15. DOI: 10.1177/0271678X17690761
82. Armulik A., Genové G., Mäe M. et al. Pericytes regulate the bloodbrain barrier. Nature 2010;468(7323):557–61. DOI: 10.1038/nature09522
83. Sagare A.P., Bell R.D., Zhao Z. et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 2013;4:2932. DOI: 10.1038/ncomms3932
84. Gerrits E., Giannini L.A.A., Brouwer N. et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022;25(8):1034–48. DOI: 10.1038/s41593-022-01124-3
85. Cullen K.M., Kócsi Z., Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 2005;25(12):1656–67. DOI: 10.1038/sj.jcbfm.9600155
86. Bell R.D., Winkler E.A., Singh I. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012;485(7399):512–6. DOI: 10.1038/nature11087
87. Gray M.T., Woulfe J.M. Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 2015;35(5): 747–50. DOI: 10.1038/jcbfm.2015.32
88. Zenaro E., Pietronigro E., Della Bianca V. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015;21(8):880–6. DOI: 10.1038/nm.3913
89. Fiala M., Liu Q.N., Sayre J. et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur J Clin Invest 2002;32(5):360–71. DOI: 10.1046/j.1365-2362.2002.00994.x
90. Donahue J.E., Flaherty S.L., Johanson C.E. et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 2006;112(4):405–15. DOI: 10.1007/s00401-006-0115-3
91. Sagare A.P., Deane R., Zlokovic B.V. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 2012;136(1):94–105. DOI: 10.1016/j.pharmthera.2012.07.008
92. DeMattos R.B., Bales K.R., Cummins D.J. et al. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 2002;295(5563):2264–7. DOI: 10.1126/science.1067568
93. DeMattos R.B., Bales K.R., Cummins D.J. et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2001;98(15):8850–5. DOI: 10.1073/pnas.151261398
94. Deane R., Singh I., Sagare A.P. et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012;122(4):1377–92. DOI: 10.1172/JCI58642
95. 2-Year extension study of azeliragon in subjects with Alzheimer’s disease (STEADFAST Extension) US National Library of Medicine. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02916056
96. Zeuzem S., Flisiak R., Vierling J.M. et al. Randomised clinical trial: alisporivir combined with peginterferon and ribavirin in treatmentnaïve patients with chronic HCV genotype 1 infection (ESSENTIAL II). Aliment Pharmacol Ther 2015;42(7):829–44. DOI: 10.1111/apt.13342
97. Teng H., Li C., Zhang Y. et al. Therapeutic effect of Cerebrolysin on reducing impaired cerebral endothelial cell permeability. Neuroreport 2021;32(5):359–66. DOI: 10.1097/WNR.0000000000001598
98. Zhang Y., Chopp M., Meng Y. et al. Improvement in functional recovery with administration of Cerebrolysin after experimental closed head injury. J Neurosurg 2013;118(6):1343–55. DOI: 10.3171/2013.3.JNS122061
99. Zhong Z., Ilieva H., Hallagan L. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest 2009;119(11):3437–49. DOI: 10.1172/JCI38476
100. Calderón-Garcidueñas L., Vojdani A., Blaurock-Busch E. et al. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J Alzheimers Dis 2015;43(3):1039–58. DOI: 10.3233/JAD-141365
Review
For citations:
Levin O.S., Gekhaeva Z.K. Neurodegenerative diseases and dementia: the role of blood-brain barrier dysfunction (based on recent evidence). The Clinician. 2025;19(1):74-84. (In Russ.) https://doi.org/10.17650/1818-8338-2025-19-1-K744