Post-traumatic cognitive disorders: the cholinergic therapy options
https://doi.org/10.17650/1818-8338-2024-18-1-K715
Abstract
Traumatic brain injury (TBI) is one of the most common causes of neurological disability in young and middle-aged people. Cognitive impairment is the most persistent and universal brain injury syndrome in cases of TBI and, moreover, the best indicator of TBI severity to predict its outcome. Cognitive impairment can persist persistently even after mild TBI, which accounts for 70–90 % of the total number of trauma patients. This may be due to the fact that in cases of mild TBI, the most fragile functions of integrative structures of the frontal and temporal lobes are slowly and not always completely recovered and the dominant clinical manifestation become complex neuropsychological disorders. Individuals with repeated mild TBI are characterized by development of chronic post-traumatic encephalopathy, that is a kind of neurodegenerative disease manifested by slowly increasing cognitive impairment, parkinsonism and a number of other neurological syndromes. Early detection and adequate correction of the cognitive impairments may improve the outcome of injury of diverging severity. Due to the fact that the pathogenesis of TBI is based on disorder of cholinergic system, the patients have predominance of regulatory disorders in the neuropsychological profile, as well as a combination of cognitive and affective disorders. Administration of acetylcholine precursors leads to rapid increase of free choline levels in plasma that penetrates the blood-brain barrier well and enhances cholinergic activity by increasing acetylcholine synthesis and release. The article considers the possibilities of using acetylcholine precursors in connection with their potential to block the progressive impairment of cognitive functions induced by trauma as well as to reduce severity of behavioral and affective disorders.
Keywords
About the Authors
O. S. LevinRussian Federation
Oleg Semenovich Levin
125993 Moscow, Barrikadnaya Str., 2/1, bild. 1;
125284 Moscow, 2 nd Botkin passage, 5
A. Yu. Nikitina
Russian Federation
125993 Moscow, Barrikadnaya Str., 2/1, bild. 1
References
1. Potapov A.A., Lichterman L.B., Kravchuk A.D. et al. Mild traumatic brain injury. Clinical recommendations / Association of neurosurgeons of Russia. Moscow, 2016. (In Russ). Available at: https://ruans.org/Text/Guidelines/mild_head_injury.pdf
2. Clinical recommendations. Brain concussion / Association of neurosurgeons of Russia. Moscow, 2022. (In Russ.). Available at: https://cr.minzdrav.gov.ru/schema/734_1?ysclid=lz0aez2yuk749431123
3. Levin O.S., Shtulman D.R. Neurology: The handbook of a practical doctor. Moscow: MEDpress-inform, 2022. (In Russ.).
4. Jennett B. Epidemiology of head injury. J Neurol Neurosurg Psychiatry 1996;60(4):362–9. DOI: 10.1136/jnnp.60.4.362
5. Classification of traumatic brain injury. Collection of scientific papers of N.N. Burdenko National Medical Center for Neurosergery / Eds. A.N. Konovalov, L.B. Lichterman, A.A. Potapov. Moscow, 1992 (In Russ.).
6. Jolly A.E., Bălăeţ M., Azor A. et. al. Detecting axonal injury in individual patients after traumatic brain injury. Brain 2021;144(1):92–113. DOI: 10.1093/brain/awaa372
7. Lichterman L.B. Traumatic brain injury. Diagnosis and treatment. Moscow: GEOTAR-Media, 2014. (In Russ.).
8. Alexander M.P. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 1995;45(7): 1253–60. DOI: 10.1212/wnl.45.7.1253
9. Madhok D.Y., Rodriguez R.M., Barber J. et al. Outcomes in patients with mild traumatic brain injury without acute intracranial traumatic injury. JAMA Netw Open 2022;5(8):e2223245. DOI: 10.1001/jamanetworkopen.2022.23245
10. Chiamulera C., Piva A., Abraham W.C. Glutamate receptors and metaplasticity in addiction. Curr Opin Pharmacol 2021;56: 39–45. DOI: 10.1016/j.coph.2020.09.005
11. Mavroudis I., Kazis D., Chowdhury R. et al. Post-concussion syndrome and chronic traumatic encephalopathy: narrative review on the neuropathology, neuroimaging and fluid biomarkers. Diagnostics (Basel) 2022;12(3):740. DOI: 10.3390/diagnostics12030740
12. Evans R.W. The postconcussion syndrome: 130 years of controversy. Semin Neurol 1994;14(1):32–9. DOI: 10.1055/s-2008-1041056
13. Hugenholtz H., Stuss D.T., Stethem L.L., Richard M.T. How long does it take to recover from a mild concussion? Neurosurgery 1988;22(5):853–8.
14. Rizzo M., Tranel D. Overview of head injury and postconcussive syndrome. In: Head Injury and Postconcussive Syndrome / Eds. M. Rizzo, D. Tranel. New York: Churchill Livingstone, 1996.
15. Kelly J.P., Rosenberg J.H. Diagnosis and management of concussion in sports. Neurology 1997;48(3):575–80. DOI: 10.1212/WNL.48.3.575
16. Iverson G.L., Gardner A.J., Castellani R.J., Kissinger-Knox A. Applying the consensus criteria for traumatic encephalopathy syndrome retrospectively to case studies of boxers from the 20th century. Neurotrauma Rep 2024;5(1):337–47. DOI: 10.1089/neur.2023.0134
17. Dean R.L., Bartus R.T. Animal models of geriatric cognitive dysfunction: evidence for an important cholinergic involvement. In: Senile Dementia of the Alzheimer Type: Early diagnosis, neuropathology and animal models / Eds. J. Traber, W.H. Gispen Berlin. Heidelberg: Springer Berlin Heidelberg, 1985. P. 269–82.
18. Akaike A. Preclinical evidence of neuroprotection by cholinesterase inhibitors. Alzheimer Dis Assoc Disord 2006;20(2 Suppl 1):S8–11. DOI: 10.1097/01.wad.0000213802.74434.d6
19. Winblad B., Jones R.W., Wirth Y. et al. Memantine in moderate to severe Alzheimer’s disease: a meta-analysis of randomised clinical trials. Dement Geriatr Cogn Disord 2007;24(1):20–7. DOI: 10.1159/000102568
20. Janowsky D.S., Overstreet D.H., Nurnberger J.I. Jr. Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet 1994;54(4):335–44. DOI: 10.1002/ajmg.1320540412
21. Rösler M. The efficacy of cholinesterase inhibitors in treating the behavioural symptoms of dementia. Int J Clin Pract Suppl 2002;(127):20–36.
22. Craig L.A., Hong N.S., McDonald R.J. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehav Rev 2011;35(6):1397–409. DOI: 10.1016/j.neubiorev.2011.03.001
23. Doody R.S., Dunn J.K., Clark C.M. et al. Chronic donepezil treatment is associated with slowed cognitive decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001;12(4):295–300. DOI: 10.1159/000051272
24. De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther 2003;25(1):178–93. DOI: 10.1016/S0149-2918(03)90023-3
25. Mohs R.C., Doody R.S., Morris J.C. et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001;57(3):481–8. DOI: 10.1212/WNL.57.3.481
26. Winblad B., Engedal K., Soininen H. et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 2001;57(3):489–95. DOI: 10.1212/WNL.57.3.489
27. Amenta F., Tayebati S.K., Vitali D. et al. Association with the cholinergic precursor choline alphoscerate and the cholinesterase inhibitor rivastigmine: an approach for enhancing cholinergic neurotransmission. Mech Ageing Dev 2006;127(2):173–9. DOI: 10.1016/j.mad.2005.09.017
28. Trabucchi M., Govoni S., Battaini F. Changes in the interaction between CNS cholinergic and dopaminergic neurons induced by L-alpha-glycerylphosphorylcholine, a cholinomimetic drug. Farmaco Sci 1986;41(4):325–34.
29. Lopez C.M., Govoni S., Battaini F. et al. Effect of a new cognition enhancer, alpha-glycerylphosphorylcholine, on scopolamine-induced amnesia and brain acetylcholine. Pharmacol Biochem Behav 1991;39(4):835–40. DOI: 10.1016/0091-3057(91)90040-9
30. Raina P., Santaguida P., Ismaila A. et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline. Ann Intern Med 2008;148(5):379–97. DOI: 10.7326/0003-4819-148-5-200803040-00009
31. Abbiati G., Fossati T., Lachmann G. et al. Absorption, tissue distribution and excretion of radiolabelled compounds in rats after administration of [14C]-L-α-glycerylphosphorylcholine. Eur J Drug Metab Pharmacokinet 1993;8(2):173–80. DOI: 10.1007/BF03188793
32. Cummings J.L. Cholinesterase inhibitors for treatment of dementia associated with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005;76(7):903–4. DOI: 10.1136/jnnp.2004.061499
33. Levin O.S., Batukaeva L.A., Anikina M.A., Yunishchenko N.A. Efficacy and safety of choline alphoscerate (Cereton) in patients with Parkinson’s disease with cognitive impairments. Neurosci Behav Physiol 2011;41(1):47–51. DOI: 10.1007/s11055-010-9377-2
34. Tomassoni D., Avola R., Mignini F. et al. Effect of treatment with choline alphoscerate on hippocampus microanatomy and glial reaction in spontaneously hypertensive rats. Brain Res 2006;1120(1):183–90. DOI: 10.1016/j.brainres.2006.08.068
35. Aleppo G., Nicoletti F., Sortino M.A. et al. Chronic L-alphaglyceryl-phosphoryl-choline increases inositol phosphate formation in brain slices and neuronal cultures. Pharmacol Toxicol 1994;74(2):95–100. DOI: 10.1111/j.1600-0773.1994.tb01082.x
36. Canal N., Franceschi M., Alberoni M. et al. Effect of L-alphaglyceryl-phosphorylcholine on amnesia caused by scopolamine. Int J Clin Pharmacol Ther Toxicol 1991;29(3):103–7.
37. Ceda G.P., Ceresini G., Denti L. et al. Alpha-glycerylphosphorylcholine administration increases the GH responses to GHRH of young and elderly subjects. Horm Metab Res 1992;24(3): 119–21. DOI: 10.1055/s-2007-1003272
38. Parnetti L., Amenta F., Gallai V. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysis of published clinical data. Mech Ageing Dev 2001;122(16):2041–55. DOI: 10.1016/S0047-6374(01)00312-8
39. Mendеlevich V.G., Surjenko I.L., Dudin D.N., Bogdanov E.I. Tsereton in the treatment of cognitive impairment in patients with dyscirculatory encephalopathy and post-traumatic encephalopathy. Russkij medicinskij zhurnal = Russian Medical Journal 2009; 5(17):384–7 (In Russ.).
40. Voropay N.G., Doronina O.B., Doronin B.M. Experience in using ceretone (choline alfoscerate) in brain concussion. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics 2010;2(4):76–80. (In Russ.).
41. Barbagallo Sangiorgi G., Barbagallo M., Giordano M. et al. alpha-Glycerophosphocholine in the mental recovery of cerebral ischemic attacks. An Italian multicenter clinical trial. Ann N Y Acad Sci 1994;717:253–69. DOI: 10.1111/j.1749-6632.1994.tb12095.x
42. Fioravanti M., Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev 2005;18(2):CD000269. DOI: 10.1002/14651858.CD000269.pub3
43. Parnetti L., Mignini F., Tomassoni D. et al. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: ineffective approaches or need for re-evaluation? J Neurol Sci 2007;257(1–2):264–9. DOI: 10.1016/j.jns.2007.01.043
Review
For citations:
Levin O.S., Nikitina A.Yu. Post-traumatic cognitive disorders: the cholinergic therapy options. The Clinician. 2024;18(1):88-99. (In Russ.) https://doi.org/10.17650/1818-8338-2024-18-1-K715