Роль новых цитокинов : ростового фактора дифференцировки 15 (GDF-15) и хрящевого гликопротеина 39 (YKL-40) в развитии и прогрессировании атеросклероза коронарных артерий
https://doi.org/10.17650/1818-8338-2012-6-3-4-
Аннотация
В обзоре представлены новые данные по изучению неспецифических биомаркеров, относящихся к семейству цитокинов: хрящевого гликопротеина 39 и ростового фактора дифференцировки 15, при коронарном атеросклерозе.
Об авторах
М. В. ЕжовРоссия
Отдел проблем атеросклероза Института клинической кардиологии им. А.Л. Мясникова
Т. Ю. Полевая
Россия
Отдел проблем атеросклероза Института клинической кардиологии им. А.Л. Мясникова
Ю. Г. Матчин
Россия
Отдел проблем атеросклероза Института клинической кардиологии им. А.Л. Мясникова
Список литературы
1. Чазов Е.И. Пути снижения смертности от сердечно-сосудистых заболеваний. Тер архив 2008;8:11–6.
2. Демографический ежегодник России. 2010: Статистический сборник. М.: Госкомстат России, 2010.
3. Bui Q.T., Prempeh M., Wilensky R.L. Atherosclerotic plaque development. Int J Biochem Cell Biol 2009;41(11):2109–13.
4. Chhatriwalla A.K., Nicholls S.J., Wang T.H. et al. Low levels of low-density lipoprotein cholesterol and blood pressure and progression of coronary atherosclerosis. J Am Coll Cardiol 2009;53(13):1110–5.
5. Liang K.W., Lee W.J., Lee W.L. et al. Diabetes exacerbates angiographic coronary lesion progression in subjects with metabolic syndrome independent of CRP levels. Clin Chim Acta 2008;388(1–2):41–5.
6. Zouridakis E., Avanzas P., Arroyo-Espliguero R. et al. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 2004;110(13):1747–53.
7. Herrmann J., Lerman L.O., Mukhopadhyay D. et al. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol 2006;26(9):1948–57.
8. Moreno P.R. Atherothrombosis: the global approach for a global disease. Pathophysiology of atherothrombosis. Highlights monograph from an International expert meeting on atherombosis. Milan, 1998.
9. Shah P.K. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 2003;41(4 Suppl S):15S–22S.
10. Agrotis A., Kalinina N., Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vasc Pharmacol 2005;3(1):55–61.
11. Белова Л.А. Биохимия процессов воспаления и поражения сосудов. Роль нейтрофилов. Биохимия 1997;62(6):659–68.
12. Johansen J.S., Jensen H.S., Price P.A. A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol 1993;32(11):949–55.
13. Rathcke C.N., Vestergaard H. YKL-40 – an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 2009;8:61.
14. Boot R.G., van Achterberg T.A., van Aken B.E. et al. Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion
15. macrophages. Arterioscler Thromb Vasc Biol 1999;19(3):687–94.
16. Shackelton L.M., Mann D.M., Millis A.J. Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodelling. J Biol Chem 1995;270(22):13076–83.
17. Volck B., Price P.A., Johansen J.S. et al. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. ProcAssoc Am Physicians 1998;110(4):351–60.
18. Ringsholt M., Hogdall E.V., Johansen J.S. et al. YKL-40 protein expression in normal adult human tissues – an immunohistochemical study. J Mol Histol 2007;38(1):33–43.
19. Johansen J.S., Hoyer P.E., Larsen L.A. et al. YKL-40 protein expression in the early developing human musculoskeletal system. J Histochem Cytochem 2007;55(12):1213–28.
20. Lee C.G., Hartl D., Lee G.R. et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med 2009;206(5):1149–66.
21. Fach E.M., Garulacan L.A., Gao J. et al. In vitro biomarker discovery for atherosclerosis by proteomics. Mol Cell Proteomics 2004;3(12):1200–10.
22. Rathcke C.N., Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res 2006;55(6):221–7.
23. Nishikawa K.C., Millis A.J. Gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp Cell Res 2003;287(1):79–87.
24. Castell J.V., Gomez-Lechon M.J., David M. et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 1989;242(2):237–9.
25. Johansen J.S., Pedersen A.N., Schroll M. et al. High serum YKL-40 level in a cohort of octogenarians is associated with increased risk of all-cause mortality. Clin Exp Immunol 2008;151(2):260–6.
26. Letuve S., Kozhich A., Arouche N. et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J Immunol 2008;181(7):5167–7.
27. Zheng J.L, Lu L., Hu J. et al. Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis 2010;210(2):590–5.
28. Kucur M., Isman F.K., Karadag B. et al. Serum YKL-40 levels in patients with coronary artery disease. Coronary Artery Dis 2007;18(5):391–6.
29. Rathcke C.N., Raymond I., Kistorp C. et al. Low grade inflammation as measured by levels of YKL-40: association with an increased overall and cardiovascular mortality rate in an elderly population. Int J Cardiol 2010;143(1):35–42.
30. Thomsen S.B., Rathcke C.N., Zerahn B., Vestergaard H. Increased levels of the calcification marker matrix Gla Protein and the inflammatory markers YKL-40 and CRP in patients with type 2 diabetes and
31. ischemic heart disease. Cardiovasc Diabetol 2010;9:86.
32. Michelsen A.E., Rathcke С.N., Skjelland M. et al. Increased YKL-40 expression in patient with carotid atherosclerosis. Atherosclerosis 2010;211(2):589–95.
33. Zimmers T., Jin X., Hsiao E. et al. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005;23(6):543–8.
34. Ago T., Sadoshima J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res 2006;98(3):294–7.
35. Argmann C.A., Van Den Diepstraten C.H., Sawyez C.G. et al. Transforming growth factor-
36. beta 1 inhibits macrophage cholesterol ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vasc Biol 2001;21(12):2011–8.
37. Anand I.S., Kempf T., Rector T.S. et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation
38. ;122(14):1387–95.
39. Bonaca M.P., Morrow D.A., Braunwald E. et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol 2011;31(1):203–10.
40. Eggers K.M., Kempf T., Allhoff T. et al. Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur Heart J 2008;29(19):2327–35.
Рецензия
Для цитирования:
Ежов М.В., Полевая Т.Ю., Матчин Ю.Г. Роль новых цитокинов : ростового фактора дифференцировки 15 (GDF-15) и хрящевого гликопротеина 39 (YKL-40) в развитии и прогрессировании атеросклероза коронарных артерий. Клиницист. 2012;6(3-4):17-22. https://doi.org/10.17650/1818-8338-2012-6-3-4-
For citation:
Еzhov M.V., Polevaya T.Yu., Matchin Yu.G. Role of the new cytokines growth differentiation factor 15 (GDF-15) and cartilage glycoprotein 39 (YKL-40) in the development and progression of coronary artery atherosclerosis. The Clinician. 2012;6(3-4):17-22. (In Russ.) https://doi.org/10.17650/1818-8338-2012-6-3-4-