Cellular and molecular aspects of degenerative disc disease and potential strategies of biological therapy
https://doi.org/10.17650/1818-8338-2020-14-1-2-42-54
Abstract
Back pain is one of the main global health problems with a high level of prevalence and patients’ disability. In most cases, it is associated with degenerative spine damage (degenerative disc disease), dorsopathy, discopathy (M51 and M53 according to the International Classification of Diseases, 10th revision), affecting all levels of the intervertebral disc (IVD) (cytological, chemical and biochemical) as a whole as well as biological molecules that regulate homeostasis of the disc intercellular substance (growth factors, pro-inflammatory cytokines, enzymes). A key point in IVD dehydration is that catabolic processes predominate over anabolic ones due to changed gene expression in the corresponding biologically active molecules, disc angiogenesis and neoinnervation of the structures of the fibrous ring and pulpous nucleus. The latter is responsible for chronic pain in patients.
Cells supporting homeostasis in nucleus pulpous, chondrocytes, continuously synthesize and restore proteoglycans and hyaluronic acid in nucleus pulpous, restoring shock-absorbing functions of the vertebral-motor segment. Decreased activity and death of chondrocytes in the avascular disc structure is a serious problem for reparative medicine. In accordance with IVD molecular-cellular mechanisms, numerous approaches to treat degenerative disc disease are being developed, each of which, influencing one of the links in the pathogenesis, has a direct or indirect effect on IVD repair.
The article describes morphology, pathogenesis and genetics of degenerative disc disease, as well as main modern strategies of biological therapy: tissue engineering, biologically active substances locally used in IVD matrix, including PRP therapy (Platelet Rich Plasma therapy), methods of gene (using the viral vector) and cell therapy, as well as experience in the local use of genetically engineered biological products. Most successful studies are a combination of cell and gene therapy with the use of synthesized matrices.
About the Authors
A. V. NovikovaRussian Federation
Department of Faculty Therapy named after Academician A. I. Nesterov
1 Ostrovityanova St., Moscow 117997
N. G. Pravdyuk
Russian Federation
Department of Faculty Therapy named after Academician A. I. Nesterov
1 Ostrovityanova St., Moscow 117997
N. A. Shostak
Russian Federation
Department of Faculty Therapy named after Academician A. I. Nesterov
1 Ostrovityanova St., Moscow 117997
References
1. Pravdyuk N.G., Shostak N.A. Degenerative spine injury associated with back pain: morphogenetic aspects. Klinitsist = The Clinician 2017;11(3–4):17–22. (In Russ.) DOI: 10.17650/1818-8338-2017-11-3-4-17-22.
2. Nijs J., Clark J., Malfliet A. et al. In the spine or in the brain? Recent advances in pain neuroscience applied in the intervention for low back pain. Clin Exp Rheumatol 2017;35 Suppl. 107(5):108–15.
3. Raastad J., Reiman M., Coeytaux R. et al. The association between lum bar spine radiographic features and low back pain: a systematic review and meta‐analysis. Semin Arthritis Rheum 2015;44(5):571–85. DOI: 10.1016/j.semarthrit.2014.10.006.
4. Anitua E., Padilla S. Biologic therapies to enhance intervertebral disc repair. Regen Med 2018;13(1):55–72. DOI: 10.2217/rme-2017-0111.
5. Fujii K., Yamazaki M., Kang J.D. et al. Discogenic back pain: literature review of definition, diagnosis, and treatment. JBMR Plus 2019;3(5):10180. DOI: 10.1002/jbm4.10180.
6. Byvaltsev V.A., Stepanov I.A., Bardonova L.A., Belykh E.G. Intervertebral disc degeneration and possibilities of tissue engineering. Hirurgia Pozvonochnika = Spine Surgery 2017;14(1):60–7. (In Russ.) DOI: 10.14531/ss2017.1.60-67.
7. Paul C.P.L., Emanuel K.S., Kingma I. et al. changes in intervertebral disk mechanical behavior during early degeneration. J Biomech Eng 2018;140(9). DOI: 10.1115/1.4039890.
8. Kushchayev S.V., Glushko T., Jarraya M. et al. ABCs of the degenerative spine. Insights Imaging 2018;9(2):253–74. DOI: 10.1007/s13244-017-0584-z.
9. Fields A.J., Ballatori A., Liebenberg E.C., Lotz J.C. Contribution of the endplates to disc degeneration. Curr Mol Biol Rep 2018;4(4):151–60. DOI: 10.1007/s40610-018-0105-y.
10. Urban J.G., Holm S., Maroudas A. Diffusion of small solutes into the intervertebral disc: an in vivo study. Biorheology 1978;15(3–4):203–21. DOI: 10.3233/bir-1978-153-409.
11. Benneker L.M., Heini P.F., Alini M. et al. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 2005;30(2):167–73. DOI: 10.1097/01.brs.0000150833.93248.09.
12. Paesold G., Nerlich A.G., Boos N. B gical treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 2007;16(4):447–68. DOI: 10.1007/s00586-006-0220-y.
13. Srivastava A., Isa I.L., Rooney P., Pandit A. Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 2017;123:127–41. DOI: 10.1016/j.biomaterials.2017.01.045.
14. Gruber H.E., Fisher E.C.Jr., Desai B. et al. Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 1997;235(1): 13–21. DOI: 10.1006/excr.1997.3647.
15. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000;10(6):415–33. DOI: 10.1006/scbi.2000.0379.
16. Kanemoto M., Hukuda S., Komiya Y. et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine 1996;21(1):1–8. DOI: 10.1097/00007632-199601010-00001.
17. Zhao R., Liu W., Xia T., Yang L. Disordered mechanical stress and tissue engineering therapies in intervertebral disc degeneration. Polymers (Basel) 2019;11(7): 1151. DOI: 10.3390/polym11071151.
18. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012;336(6085):1124–8. DOI: 10.1126/science.1214804.
19. Feng G., Zhang Z., Dang M. et al. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials 2017;131:86–97. DOI: 10.1016/j.biomaterials.2017.03.029.
20. Nakashima S., Matsuyama Y., Takahashi K. et al. Regeneration of intervertebral disc by the intradiscal application of crosslinked hyaluronate hydrogel and cross-linked chondroitin sulfate hydrogel in a rabbit model of intervertebral disc injury. Biomed Mater Eng 2009;19(6):421–9. DOI: 10.3233/BME-2009-0608.
21. Nerurkar N.L., Sen S., Baker B.M. et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater 2011;7(2):485–91. DOI: 10.1016/j.actbio.2010.08.011.
22. Vadalà G., Mozetic P., Rainer A. et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur Spine J 2012;21(Suppl. 1):20–6. DOI: 10.1007/s00586-012-2235-x.
23. Zhu C., Li J., Liu C. et al. Modulation of the gene expression of annulus fibrosusderived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity. Acta Biomater 2016;29:228–38. DOI: 10.1016/j.actbio.2015.09.039.
24. Scholz B., Kinzelmann C., Benz K. et al. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur Cell Mater 2010;20:24–37. DOI: 10.22203/ecm.v020a03.
25. Silva-Correia J., Miranda-Gonçalves V., Salgado A.J. et al. Angiogenic potential of gellan-gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study. Tissue Eng Part A 2012;18(11–12):1203–12. DOI: 10.1089/ten.TEA.2011.0632.
26. Perugini V., Guildford A.L., Silva-Correia J. et al. Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. J Tissue Eng Regen Med 2018;12(2):669–78. DOI: 10.1002/term.2340.
27. Schmocker A., Khoushabi A., F ger D.A. et al. A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement. Biomaterials 2016;88:110–9. DOI: 10.1016/j.biomaterials.2016.02.015.
28. Yuan D., Chen Z., Xiang X. et al. The establishment and biological assessment of a whole tissue-engineered intervertebral disc with PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed Mater Res B Appl Biomater 2019;107(7):2305–16. DOI: 10.1002/jbm.b.34323.
29. An H.S., Thonar E.J., Masuda K. Biological repair of intervertebral disc. Spine (Phila Pa 1976) 2003;28(Suppl.15):86–92. DOI: 10.1097/01.BRS.0000076904.99434.40.
30. Klein R.G., Eek B.C., O’Neill C.W. et al. Biochemical injection treatment for discogenic low back pain: a pilot study. Spine J 2003;3(3):220–6. DOI: 10.1016/s1529-9430(02)00669-1.
31. Malanin D.A., Tregubov A.S., Demeshchenko M.V., Cherezov L.L. PRP therapy in osteoarthritis of large joints. Guidelines. Volgograd: Volgograd State Medical University 2018. P. 46. (In Russ.)
32. Pirvu T., Schroeder J., Peroglio M. et al. Platelet-rich plasma causes proliferation of fibrous ring cells and matrix formation. Eur J Spine 2014;23(4):745–53. DOI: 10.1007/s00586-014-3198-x.
33. Nagae M., Ikeda T., Mikami Y. et al. Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres. Tissue Eng 2007;13(1):147–58. DOI: 10.1089/ten.2006.0042.
34. Nurden A.T., Nurden P., Sanchez M. et al. Platelets and wound healing. Front Biosci 2008;13:3532–48.
35. Akeda K., Yamada J., Linn E.T. et al. Platelet-rich plasma in the management of chronic low back pain: a critical review. J Pain Res 2019;12:753–67. DOI: 10.2147/JPR.S153085.
36. Tuakli-Wosornu Y.A., Terry A., BoachieAdjei K. et al. lumbar intradiskal plateletrich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PMR 2016;8(1):1–10. DOI: 10.1016/j.pmrj.2015.08.010.
37. Imai Y., Miyamoto K., An H.S. et al. Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine (Phila Pa 1976) 2007;32(12):1303–9. DOI: 10.1097/BRS.0b013e3180593238.
38. Hodgkinson T., Shen B., Diwan A. et al. Therapeutic potential of growth differentiation factors in the treatment of degenerative disc diseases. JOR Spine 2019;2(1):1045. DOI: 10.1002/jsp2.1045.
39. Clarke L.E., McConnell J.C., Sherratt M.J. et al. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014;16(2):R67. DOI: 10.1186/ar4505.
40. Wolff J.A., Malone R.W., Williams P. et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt. 1): 1465–8. DOI: 10.1126/science.1690918.
41. Li S., Wu S.P., Whitmore M. et al. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol 1999;276(5):796–804. DOI: 10.1152/ajplung.1999.276.5.L79.
42. Mahato R.I., Kawabata K., Takakura Y., Hashida M. In vivo disposition characteristics of plasmid DNA complexed with cationic liposomes. J Drug Target 1995;3(2): 149–57. DOI: 10.3109/10611869509059214.
43. Yang N.S., Burkholder J., Roberts B. et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990;87(24):9568–72. DOI: 10.1073/pnas.87.24.9568.
44. Wehling P., Schulitz K.P., Robbins P.D. et al. Transfer of genes to chondrocytic cells of the lumbar spine. Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine (Phila Pa 1976) 1997;22(10):1092–7. DOI: 10.1097/00007632-199705150-00008.
45. Kroeber M.W., Unglaub F., Wang H. et al. New in vivo animal model tocreate intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine (Phila Pa 1976). 2002;27(23):2684–90. DOI: 10.1097/00007632-200212010-00007.
46. Ritter T., Lehmann M., Volk H.D. Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 2002;16(1):3–10. DOI: 10.2165/00063030-200216010-00001.
47. Lattermann C., Oxner W.M., Xiao X. et al. The adeno associated viral vector as a strategy for intradiscal gene transfer in immune competent and pre-exposed rabbits. Spine (Phila Pa 1976) 2005;30(5):497–504. DOI: 10.1097/01.brs.0000154764.62072.44.
48. Nishida K., Kang J.D., Gilbertson L.G. et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirusmediated transfer of the human transforming growth factor beta 1 encoding gene. Spine (Phila Pa 1976) 1999;24(23):2419–25. DOI: 10.1097/00007632-199912010-00002.
49. Yoon S.T., Park J.S., Kim K.S. et al. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine (Phila Pa 1976) 2004;29(23):2603–11. DOI: 10.1097/01.brs.0000146103.94600.85.
50. Paul R., Haydon R.C., Cheng H. et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003;28(8):755–63. DOI: 10.1097/00007632-200304150-00006.
51. Moon S.H., Nishida K., Gilbertson L. et al. Biologic response of human intervertebral disc cell to gene therapy cocktail. Spine (Phila Pa 1976) 2008;33(17):1850–5. DOI: 10.1097/BRS.0b013e31817e1cd7.
52. Wallach C.J., Sobajima S., Watanabe Y. et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 2003;28(10):2331–7. DOI: 10.1097/01.BRS.0000085303.67942.94.
53. Ganey T., Libera J., Moos V. et al. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila Pa 1976) 2003;28(23):2609–20. DOI: 10.1097/01.BRS.0000085303.67942.94.
54. Bertram H., Kroeber M., Wang H. et al. Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun 2005;331(4):1185–92. DOI: 10.1016/j.bbrc.2005.04.034.
55. Sato M., Asazuma T., Ishihara M. et al. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 2003;28(6):548–53. DOI: 10.1097/01.BRS.0000049909.09102.60.
56. Sato M., Kikuchi M., Ishihara M. et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med Biol Eng Comput 2003;41(3):365–71. DOI: 10.1097/01.BRS.0000049909.09102.60.
57. Richardson S.M., Walker R.V., Parker S. et al. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 2006;24(3):707–16. DOI: 10.1634/stemcells.2005-0205.
58. Moore R.J. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine 2006;15(Suppl 3):333–7. DOI: 10.1007/s00586-006-0170-4.
59. Zhang Y.G., Guo X., Xu P. et al. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 2005;(430):219–26. DOI: 10.1097/01.blo.0000146534.31120.cf.
60. Tam V., Rogers I., Chan D. et al. A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J Orthop Res 2014;32(6):819–25. DOI: 10.1002/jor.22605.
61. Leckie S.K., Sowa G.A., Bechara B.P. et al. Injection of human umbilical tissuederived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. Spine J 2013;13(3): 263–72. DOI: 10.1016/j.spinee.2012.12.004.
62. Orozco L., Soler R., Morera C. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 2011;92(7):822–8. DOI: 10.1097/TP.0b013e3182298a15.
63. Lu Z.F., Doulabi Z.B., Wuisman P.I. et al. Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect. Biochem Biophys Res Commun 2007;359(4):991–6. DOI: 10.1016/j.bbrc.2007.06.002.
64. Hider S.L., Konstantinou K., Hay E.M. et al. Inflammatory biomarkers do not distinguish between patients with sciatica and referred leg pain within a primary care population: results from a nested study within the ATLAS cohort. BMC Musculoskelet Disord 2019;20(1):202. DOI: 10.1186/s12891-019-2604-2.
65. Risbud M.V., Shapiro I.M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2014;10(1):44–56. DOI: 10.1038/nrrheum.2013.160.
66. Evashwick‐Rogler T.W., Lai A., Watanabe H. et al. Inhibiting tumor necrosis factoralpha at time of induced intervertebral disc injury limits long‐term pain and degeneration in a rat model. JOR Spine 2018;1(2):1014. DOI: 10.1002/jsp2.1014.
67. Ohtori S., Miyagi M., Eguchi Y. et al. Epidural administration of spinal nerves with the tumor necrosis factor-alpha inhibitor, etanercept, compared with dexamethasone for treatment of sciatica in patients with lumbar spinal stenosis: a prospective randomized study. Spine (Phila Pa 1976) 2012;37(6):439–44. DOI: 10.1097/BRS.0b013e318238af83.
68. Okoro T., Tafazal S.I., Longworth S., Sell P.J. Tumor necrosis α-blocking agent (etanercept): a triple blind randomized controlled trial of its use in treatment of sciatica. Clinical Spine Surgery 2010;23(1);74–7. DOI: 10.1097/BSD.0b013e31819afdc4.
69. Cohen S.P. White R.L., Kurihara C. et al. Epidural steroids, etanercept, or saline in subacute sciatica: a multicenter, randomized trial. Ann Intern Med 2012;156(8);551–9. DOI: 10.7326/0003-4819-156-8-201204170-00002.
70. Genevay S., Finckh A., Zufferey P. et al. Adalimumab in acute sciatica reduces the long-term need for surgery: a 3-year follow-up of a randomised double-blind placebo-controlled trial. Ann Rheum Dis 2012;71(4):560–2. DOI: 10.1136/annrheumdis-2011-200373.
71. Korhonen T., Karppinen J., Paimela L. et al. The treatment of disc-herniationinduced sciatica with infliximab: one-year follow-up results of FIRST II, a randomized controlled trial. Spine (Phila Pa 1976) 2006;31(24):2759–66. DOI: 10.1097/01.brs.0000245873.23876.1e.
72. Sainoh T., Orita S., Miyagi M. et al. Interleukin-6 and interleukin-6 receptor expression, localization, and involvement in pain-sensing neuron activation in a mouse intervertebral disc injury model. J Orthop Res 2015;33(10):1508–14. DOI: 10.1002/jor.22925.
73. Huang B.R., Chen T.S., Bau D.T. et al. EGFR is a pivotal regulator of thrombin-mediated inflammation in primary human nucleus pulposusculture. Sci Rep 2017;7(1):8578. DOI: 10.1038/s41598-017-09122-3.
74. Pan Z., Sun H., Xie B. et al. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration. Biomaterials 2018;160:56–68. DOI: 10.1016/j.biomaterials.2018.01.016.
Review
For citations:
Novikova A.V., Pravdyuk N.G., Shostak N.A. Cellular and molecular aspects of degenerative disc disease and potential strategies of biological therapy. The Clinician. 2020;14(1-2):42-54. (In Russ.) https://doi.org/10.17650/1818-8338-2020-14-1-2-42-54