Biochemical algorithms of early diagnostic of metabolic remodeling and cardiac hypertrophy in patients with diabetic mellitus and chronic heart failure cause by ischemic heart disease
https://doi.org/10.17650/1818-8338-2019-13-1-2-41-54
Abstract
The aims of study – a development of biochemical algorithms of early diagnostic of severity of CHF in patients with DM and IHD and analyze interrelationships between plasma redox-potential, as a marker of progressive of tissues metabolic remodeling and cardiac hypertrophy and markers of progressive of DM, neurohumoral markers of severity of CHF, and frequency of heart rhythm disturbances.
Materials and methods. 172 patients, male / female (45–65 years), with diagnosis of DM (metabolic decompensation of carbohydrate metabolism, HbА1c – 7.4 ± 1.9 %) during 3–15 years, accompanied with IHD and symptoms of CHF I–IV NYHA functional class (FC). The first point of investigation was examined markers of DM progression HbА1c, changes in FC of HCHF and evidenced prognostic neurohumoral markers of myocardial dysfunction NT-proBNP, and as a second (surrogate) point – changes in redox-potential NAD / NADH and total pool of pyridine nucleotides.
Results. Mean NYHA FC CHF in cohort of DM patients and IHD was 2.4 ± 1.2, mean point of CHF estimated by scale of symptoms of CHF was 6.7 ± 0.6, mean distance in 6-minute test was 212 ± 26 m, concentration of neurohumoral markers of myocardial dysfunction NT-proBNP 178 ± 26 fmol / l at the level of HbA1c = 7.8 ± 1.0 %, mean redox-potential of plasma, НАД / НАДН, 0.71 ± 0.06 and total pool of pyridine nucleotide 15.1 ± 1.2 μmol / mg protein of plasma. For the first time was shown that changes in redox-potential and sum of pyridine nucleotide coupled with severity of CHF (FC of CHF), eliminated the correlation between NAD / NADH and HbA1c (r = –0.79, p<0.001), and NTproBNP (r = –0.73; р <0.001), and increasing of tumor necrosis factor alpha (TNF-α, r = –0.73; р <0.001). Simultaneously maintenance decreasing of NAD / NADH and sum of pyridine nucleotide in plasma of patients with DM and IHD coupled with increasing of daily mean values of paired supraventricular and ventricular extrasystoles.
Conclusions. In patients with DM and CHF with left ventricular dysfunction the decreasing of redox-potential level in plasma could be recommended as a markers of increasing of metabolic remodeling and progression of cardiac hypertrophy.
About the Authors
O. P. DonetskayaRussian Federation
10 Starovolynskaya St., Moscow 121352, Russia
N. V. Shuldeshova
Russian Federation
10 Starovolynskaya St., Moscow 121352, Russia
V. A. Tulupova
Russian Federation
10 Starovolynskaya St., Moscow 121352, Russia
G. V. Sukoyan
Russian Federation
3 Armavirskaya St., Moscow 109382, Russia
References
1. Cannata A., Camparini L., Sinagra G. et al. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res 2016;111(2):42–53. DOI: 10.1093/cvr/cvw106.
2. Walker A.M., Patel P.A., Rajwani A. et al. Diabetes mellitus is associated with adverse structural and functional cardiac remodelling in chronic heart failure with reduced ejection fraction. Diab Vasc Dis Res 2016;13(5):331–40. DOI: 10.1177/1479164116653342.
3. Shah M.S., Brownlee M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ Res 2016;118(11):808–29. DOI: 10.1161/CIRCRESAHA.115.306249.
4. Ido J., Kilo C., Williamson J.R. Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetic mellitus. Diabetologia 1997;40(Suppl 2): 115–7. DOI: 10.1007/s001250051422.
5. Wu J., Jin Z., Zheng H., Yan L.J. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016;9:145–53. DOI: 10.2147/DMSO.S106087.
6. Scheubel R.J., Tostlebe M., Simm A. et al. Dysfunction of mitochondrial respiratory chain complex 1 in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 2002;40(12):2174–81. DOI: 10.1016/S0735-1097(02)02600-1.
7. Karamanlidis G., Lee C.F., Garcia-Menendez L. et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 2013;18(2):239–50. DOI: 10.1016/j.cmet.2013.07.002.
8. Bhatt N.M., Aon M.A., Tocchetti C.G. et al. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2015;308(4):H291–302. DOI: 10.1152/ajpheart.00378.2014.
9. Elhassan Y.S., Philp A.A., Lavery G.G. Targeting NAD+ in metabolic disease: New Insights Into an Old Molecule. J Endocrin Society 2017;1(7):816–35. DOI: 10.1210/js.2017-00092.
10. Karsanov N.V., Galenko-Iaroshevsky P.A., Sukoyan G.V., Karsanov V.N. Molecular mechanism of cardiac glycoside action. In: Cardiac glycosides. Moscow: Meditsina, 2004. (In Russ.)
11. Ido Y. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3. J Diabetes Investig 2016; 7(4):448–58. DOI: 10.1111/jdi.12485.
12. Sukoyan G.V., Kavadze I.K. Effect of nadcin on energy supply system and apoptosis in ischemia-reperfusion injury to the myocardium. Bull Exp Biol Med 2008;146(3):321–4. DOI: 10.1007/s10517-008-0268-2.
13. Pillai J.B., Isbatan A., Imai S-I., Gupta MP. Poly(ADP-ribose)polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2a deacetylase activity. Biol Chem 2005;280:43121–130. DOI: 10.1074/jbc.M506162200.
14. Pillai V.B., Sundaresan N.R., Kim G. et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 2010;285(5): 3133–44. DOI: 10.1074/jbc.M109.077271.
15. Sukoyan G.V., Golovach S.V., Dolidze N.M. et al. Hypertrophic and Inflammatory Markers in Isoproterenol-Induced Cardiac Hypertrophy and its Pharmacological Correction. Cardiovasc Pharmacol Open Access 2017;6:225–30. DOI: 10.4172/2329-6607.1000225.
16. Wang S., Xing Z., Vosler P.S. et al. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death role of enhanced DNA repair. Stroke 2008;39(9):2587–95. DOI: 10.1161/STROKEAHA.107.509158.
17. Caito S.W., Aschner M. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity Caenorhabditis Elegans. Toxicol Sci 2016; 151(1):139–49. DOI: 10.1093/toxsci/kfw030.
18. Zhuo L., Fu B., Bai X. et al. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell Physiol Biochem 2011;27:681–90. DOI: org/10.1159/000330077.
19. Paleev N.R., Sanina N.P., Sukoyan G.V. et al. Effect of new cardiotropic drug refrecterin and antihypoxic, antiischemic preparation energostim on the biochemical parameters of bloods and biopsies in the process of heart failure treatment. All-Russian conference “Applied aspects of skeletal, cardiac and smooth muscle investigations”. Pushino. 1996. (in Russ)
20. Sukoyan G.V, Oganov R.G. Signal mechanisms of cardioprotection and new strategies for heart failure prevention and treatment. Profilakticheskaya meditsina = Profilac Medicine 2012;11(2):23–32. (In Russ.) DOI: 10.15829/1728-8800-2012-2.
21. Kilfoil P.J., Tipparaju S.M., Barski O.A., Bhatnagar A. Regulation of ion channels by pyridine nucleotides. Circ Res 2013;112(4):721–41. DOI: 10.1161/CIRCRESAHA.111.247940.
22. Liu M., Sanyal S., Gao G. et al. Cardiac Na+ current regulation by pyridine nucleotides. Circ Res 2009;105(8):737–45. DOI: 10.1161/CIRCRESAHA.109.197277.
23. Jeong E.M., Liu M., Sturdy M. et al. Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 2012;52(2):454–63. DOI: 10.1016/j.yjmcc.2011.09.018.
24. Donetskaya O.P., Tulupova V.A., Shuldeshova N.V., Fedorova M.M. Pharmacological correction of plasma redox-potential and endothelial dysfunction in ischemic heart failure. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovasc Ther Prev 2012;11(1):54–8. (In Russ.) DOI: 10.15829/1728-8800-2012-1.
25. Karsanov N.V., Sukoyan G.V., Kavadze I.K. et al. Endothelial dysfunction, redox-potential systems of energy supply and aldosterone synthesis in chronic heart failure with and without atrial fibrillation. Rossijskij kardiologicheskij zhurnal = Russian J Cardiology 2003;4:28–31. (In Russ.) DOI: 10.15829/1560-4071-2003-4-28-31.
26. Haag F., Adriouch S., Brab A. et al. Extracellular NAD and ATP: Partners in immune cell modulation. Purinergic Signal 2007;3(1–2):71–81. DOI: 10.1007/s11302-006-9038-7.
27. Galenko-Iaroshevsky P.A., Sukoyan G.V., Ionov D.I. et al. Possibility of Inhibition of TNF-α/NF-kB Signaling Pathway Activation in Myocardium and Reverse Cardiac Hemodynamics in Chronic Ischemic Heart Disease. J Clin Exp Pathol 2017;7:3. DOI: 10.4172/2161-0681.1000310.
Review
For citations:
Donetskaya O.P., Shuldeshova N.V., Tulupova V.A., Sukoyan G.V. Biochemical algorithms of early diagnostic of metabolic remodeling and cardiac hypertrophy in patients with diabetic mellitus and chronic heart failure cause by ischemic heart disease. The Clinician. 2019;13(1-2):41-54. (In Russ.) https://doi.org/10.17650/1818-8338-2019-13-1-2-41-54