Preview

The Clinician

Advanced search

ASSOCIATION OF MUTATIONS IN THE MITOCHONDRIAL GENOME WITH CORONARY AND CAROTID ATHEROSCLEROTIC LESIONS

https://doi.org/10.17650/1818-8338-2014-1-34-41

Abstract

Objective: to study the association of C3256T, G13 513A, G14 846A, and G12 315A mutations in the mitochondrial genome with the presence and degree of coronary and carotid atherosclerotic lesions.

Subjects and methods. The investigation enrolled 193 patients (mean age 54.6 ± 9.5 years), including 154 men, who had undergone coronary angiography. A study group consisted of 130 patients with coronary atherosclerosis. A control group comprised 63 patients without this disease. Genetic analysis consisted of 3 steps: 1) isolation of genomic deoxyribonucleic acid from whole blood leukocytes by phenol-chloroform extraction; 2) amplification of polymorphic sites in the examined mitochondrial deoxyribonucleic acid genes by polymerase chain reaction; 3) pyrosequencing
for the detection of nucleotide sequencing and the determination of the level of heteroplasmy of the examined mutations.

Results. The level of heteroplasmy of G13 513A and C3256T mutations was statistically significantly higher in the patients with coronary atherosclerosis than in those without this condition (p = 0.03 and p = 0.01, respectively) whereas that of G12 315A mutation was significantly higher in the persons without coronary atherosclerosis (p = 0.004). The level of heteroplasmy of G14 846A mutation was greater in people over 45 years of age. No association was found between mutations in the mitochondrial genome and cardiovascular risk factors, such as smoking, hypertension, poor family history, and obesity. There was a direct relationship of hyperlipidemy to C3256T mutation (r = 0.18; р = 0.01) and its inverse relationship to G12 315A mutation (r = –0.2; р = 0.005), There was a positive correlation between G14 846A mutation
and lipoprotein (a) levels. There was also a positive correlation between carotid atherosclerosis with С3256Т (r = 0.49; p = 0.0001)
and G14 846A (r = 0.48; p = 0.0001) mutations. G12 315A mutation showed a negative correlation with carotid atherosclerosis (r = –0.32; p = 0.01). 

Conclusion. The case-control study gave proof to the association between the level of heteroplasmy of С3256T, G13 513A, G14 846A, and G12 315A mutations in the mitochondrial genome and coronary and carotid atherosclerosis. Measurement of the heteroplasmy of С3256T, G13 513A and G14 846A mutations in the mitochondrial gene may be proposed as potential genetic markers to improve the diagnosis of a preposition to coronary and carotid atherosclerosis.

About the Authors

L. A. Smirnova
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


Z. B. Khasanova
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


M. V. Ezhov
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


T. Yu. Polevaya
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


Yu. G. Matchin
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


T. V. Balakhonova
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


I. A. Sobenin
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


A. Yu. Postnov
Russian Cardiology Research-and-Production Complex, Ministry of Health of Russia, Moscow
Russian Federation


References

1. Ballinger S. W., Petterson C., Yan C. N. et al. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000;86(9):960–6.

2. Тодоров И. Н., Тодоров Г. И. Мультифакторная природа высокой частоты мутаций в МТДНК cоматических клеток млекопитающих. Биохимия 2009;74(9):1184–94.

3. Wallace D. C., Ye J. H., Neckelmann S. N. et al. Sequence analysis of cDNAs for the human and bovine ETP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 1987;12(2):81–90.

4. Kmiec B., Woloszynska M., Janska H. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 2006;50(3):149–59.

5. Harrison D., Griendling K. K., Landmesser U. et al. Role of oxidative stress in аtherosclerosis. Am J Cardiol 2003;91(3А): 7А–11А.

6. Fearon I. M., Faux S. P. Oxidаtive stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 2009;47(3):372–81.

7. Madamanchi N. R., Runge M. S. Mitochondrial dysfunction in atherosclerosis. Circ Res 2007;100(4):460–73.

8. Puddu P., Puddu G. M., Galletti L. et al. Mitochondrial dysfunction as an initieting event in etherogenesis: а plausible hypothesis. Cardiology 2005;103(3):137–41.

9. Sobenin I. A., Sazonova M. A., Ivanova M. M. et al. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One 2012;7(10):e46573.

10. Mueller E. E., Eder W., Ebner S. et al. The mitochondrial T16189C polymorphism is associeted with coronary artery disease in Middle European populations. PLoS One 2011;6(1):e16455.

11. Sazonova M., Budnikov E., Khasanova Z. еt al. Studies of human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome. Atherosclerosis 2009;204(1):184–90.

12. Galkina E., Ley K. Leukocyte influx in atherosclerosis. Curr Drug Targets 2007;8(12):1239–48.

13. Wonnapinij P., Chinnery P. F., Samuels D. C. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet 2008;83(5):582–93.

14. Митрофанов К. Ю., Желанкин А. В., Сазонова М. А. и др. Ассоциация мутаций ядерного генома с развитием инфаркта миокарда. Атеросклероз и дислипидемии 2013;(2):56–60.

15. Abu-Amero K. K., Al-Boudari O. M., Mousa A. et al. The mitochondrial DNA variant Т16189С is associated with coronary artery disease and myocardial infarction in Saudi Arabs. Genet Test Mol Biomarkers 2010;14(1):43–7.

16. Sobenin I. A., Chistiakov D. A., Bobryshev Y. V. et al. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des 2013;19(33):5942–53.

17. Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 1992;256(5057):628–32.

18. Ballinger S. W., Patterson C., Knight-Lozano C. A. et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002;30;106(5):544–9.

19. Синев В. В., Сазонова М. А., Чичёва М. М. и др. Изучение гетероплазмии мутации митохондриального генома A1555G в гомогенатах пораженной атеросклерозом интимы аорты. Атеросклероз и дислипидемии 2013;(3):45–48.

20. Silvestri G., Santorelli F. M., Shanske S. et al. A new mtDNA mutation in the tRNA (Leu (UUR)) gene is associated with maternally inherited cardiomyopathy. Hum Mutat 1994;3(1);37–43.

21. Merante F., Tein I., Benson L., Robinson B. H. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA (glycine) gene. Am J Hum Genet 1994;55(3):437–46.

22. Yu E., Calvert P. A., Mercer J. R. et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 2013;128(7):702–12.

23. Calvert P. A., Obaid D. R., O’Sullivan M. et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 2011;4(8):894–901.

24. Stone G. W., Maehara A., Lansky A. J. et al.; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364(3):226–35.

25. Rossmanith W., Karwan R. M. Impairment of tRNA processing by point mutations in mitochondrial tRNA (Leu) (UUR) associated with mitochondrial diseases. FEBS Lett 1998;433(3):269–74.

26. Levinger L., Mӧrl M., Florentz C. Mitochondrial tRNA 3’ end metabolism and human disease. Nucleic Acids Res 2004;32(18):5430–41.

27. Shanske S., Coku J., Lu J. et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 2008;65(3):368–72.

28. Sudo A., Honzawa S., Nonaka I., Goto Y. Leigh syndrome caused by mitochondrial DNA G13513A mutation: frequency and clinical features in Japan. J Hum Genet 2004;49(2):92–6.

29. Andreu A. L., Bruno C., Shanske S. et al. Missense mutation in the mtDNA cytochrome b gene in a patient with myopathy. Neurology 1998;51(5):1444–7.


Review

For citations:


Smirnova L.A., Khasanova Z.B., Ezhov M.V., Polevaya T.Yu., Matchin Yu.G., Balakhonova T.V., Sobenin I.A., Postnov A.Yu. ASSOCIATION OF MUTATIONS IN THE MITOCHONDRIAL GENOME WITH CORONARY AND CAROTID ATHEROSCLEROTIC LESIONS. The Clinician. 2014;8(1):34-41. (In Russ.) https://doi.org/10.17650/1818-8338-2014-1-34-41

Views: 828


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8338 (Print)
ISSN 2412-8775 (Online)