Preview

The Clinician

Advanced search

Modern possibilities of echocardiographic diagnosis in pulmonary arterial hypertension

https://doi.org/10.17650/1818-8338-2024-18-4-K729

Abstract

   Pulmonary Hypertension (PH) is a hemodynamic and pathophysiological condition characterized by an increase in mean pulmonary artery (PA) pressure by at least 20 mm Hg at rest, measured during right heart catheterization. One of the fastest and most accessible screening non-invasive diagnostic methods for assessing the likelihood of this condition is echocardiography, which is performed according to the standard transthoracic echocardiography protocol, focusing on visualizing and describing certain parameters that characterize function of heart right chambers. In patients with PH, structural changes in the heart right chambers can be observed, such as enlargement of the right atrium and right ventricle, changes in their geometric shape, thickening right ventricle wall, dilatation of the main PA and its branches, and the appearance of tricuspid regurgitation. Pulmonary artery pressure can be measured using either the velocity of the tricuspid regurgitant jet or the ratio of the time acceleration of flow in the outflow tract of the right ventricle to the ejection time (mean pressure in the PA), or the velocity of the pulmonary regurgitation jet (end-diastolic pressure in the PA). Classic parameters of the functional state of the right ventricle, as well as additional indicators of the evaluation of the right ventricular function, for example, the ratio of the amplitude of movement of the fibrous ring to systolic pressure in the PA, called the right ventriculoarterial coupling, should be evaluated only in expert centers providing care for patients with PH. Correct and timely diagnosis, clear dynamic monitoring of the patient’s condition play a crucial role in prescribing targeted treatment and predicting the disease course.

About the Authors

A. A. Klimenko
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; N.I. Pirogov City Clinical Hospital No. 1, Moscow Healthcare Department
Russian Federation

Alesya Aleksandrovna Klimenko

117997; 1 Ostrovitianov St.; 119049; 8 Leninskiy Avenue; Moscow



A. A. Bogdanova
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
Russian Federation

119048; 8 / 2 Trubetskaya St.; Moscow



V. A. Mareeva
N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

117997; 1 Ostrovitianov St.; Moscow



References

1. Chazova I.E., Martynyuk T.V., Shmalts A.A. et al. Eurasian recommendations for the diagnosis and treatment of pulmonary hypertension. 2023. Evrazijskij kardiologicheskij zhurnal = Eurasian Journal of Cardiology 2024;(1):6–85. (In Russ.). DOI: 10.38109/2225-1685-2024-1-6-85

2. Avdeev S.N., Barbarash O.L., Valieva Z.S. et al. 2024 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Rossijskij kardiologicheskij zhurnal = Russian Journal of Cardiology 2024;29(11):6161. (In Russ.). DOI: 10.15829/1560-4071-2024-6161

3. Belevskaya A.A., Dadacheva Z.H., Saidovа M.I. et al. The role of echocardiography in diagnosis of pulmonary hypertension and assessment of heart remodeling. Lechebnoe delo = Medical Business 2015;(1):111–21. (In Russ.).

4. Fedorets V.N., Naiden T.V. Echocardiographic assessment of the right ventricle, hemodynamic characteristics, and identification of pulmonary hypertension. Medicina: teoriya i praktika = Medicine: Theory and Practice 2022;7(2):62–9. (In Russ.). DOI: 10.56871/7421.2022.65.99.008

5. Ullah W., Minalyan A., Saleem S. et al. Comparative accuracy of non-invasive imaging versus right heart catheterization for the diagnosis of pulmonary hypertension : A systematic review and meta-analysis. Int J Cardiol Heart Vasc 2020;29:100568. DOI: 10.1016/j.ijcha.2020.100568

6. Stroev Yu.I., Churilov L.P. Diagnosis of respiratory system diseases and its pathophysiological basis: III. Cor pulmonale – pulmonary heart disease. Rossijskie biomedicinskie issledovaniya = Russian Biomedical Research 2020;5(2):4–16 (In Russ.).

7. Chazova I.E., Martynyuk T.V., Danilov N.M. Pulmonary Hypertension or Cardiology’s Highest Piloting Skill. Sistemny’e gipertenzii = Systemic Hypertensions 2020;17(2):66–8. (In Russ.). DOI: 10.26442/2075082X.2020.2.200213

8. Hahn R.T., Weckbach L.T., Noack T. et al. Proposal for a standard echocardiographic tricuspid valve nomenclature. JACC Cardiovasc Imaging 2021;14:1299–305. DOI: 10.1016/j.jcmg.2021.01.012

9. – Clinical Guidelines. Defects of the Tricuspid (Three-Leaf) Valve, 2018 / Association of Cardiovascular Surgeons of Russia. (In Russ.). Available at: https://racvs.ru/upload/iblock/be7/be791631b1a735148d13ddd30c36bae1.pdf

10. Lancellotti P., Moura L., Pierard L.A. et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr 2010;11(4):307–32. DOI: 10.1093/ejechocard/jeq031

11. Prihadi E.A., Delgado V., Leon M.B. et al. Morphologic types of tricuspid regurgitation: characteristics and prognostic implications. JACC Cardiovasc Imaging 2019;12(3):491–9. DOI: 10.1016/j.jcmg.2018.09.027

12. Nath J., Foster E., Heidenreich P.A. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol 2004;43(3):405–9. DOI: 10.1016/j.jacc.2003.09.036

13. Dycur O.N., Poltavskaya M.G., Giverts I.Yu. et al. Ventriculoarterial coupling in chronic heart failure with preserved and reduced left ventricular ejection fraction. Kardiologiya i serdechno-sosudistaya khirurgiya = Cardiology and Cardiovascular Surgery 2014;7(4):59–68. (In Russ.). DOI: 10.17116/terarkh2016889102-105

14. Mareeva V.A., Klimenko A.A., Shostak N.A. Pulmonary hypertension and heart failure: alternative indexes of right ventricular-pulmonary artery coupling. Racional`naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology 2023;19(4):398–402. (In Russ.) DOI: 10.20996/1819-6446-2023-2929

15. Pestelli G., Fiorencis A., Trevisan F. et al. New measures of right ventricle-pulmonary artery coupling in heart failure: an all-cause mortality echocardiographic study. Int J Cardiol 2021;329:234–41. DOI: 10.1016/j.ijcard.2020.12.057

16. Guazzi M., Dixon D., Labate V. et al. RV Contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging 2017;10(10):1211–21. DOI: 10.1016/j.jcmg.2016.12.024

17. Tello K., Wan J., Dalmer A. et al. Validation of the tricuspid annular plane systolic excursion / systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging 2019;12(9):e009047. DOI: 10.1161/CIRCIMAGING.119.009047

18. Ghio S., Guazzi M., Scardovi A.B. et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur J Heart Fail 2016;19(7):873–9. DOI: 10.1002/ejhf.664

19. Lopez-Candales A., Rajagopalan N., Saxena N. et al. Right ventricular systolic function is not the sole determinant of tricuspid annular motion. Am J Cardiol 2006;98(7):973–7. DOI: 10.1016/j.amjcard.2006.04.041

20. Fisher M.R., Forfia P.R., Chamera E. et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. American journal of respiratory and critical care medicine: Am J Respir Crit Care Med 2009;179(7):615–21. DOI: 10.1164/rccm.200811-1691OC

21. Vicenzi M., Caravita S., Rota I. et al. The added value of right ventricular function normalized for afterload to improve risk stratification of patients with pulmonary arterial hypertension. PLоS One 2022;17(5):e0265059. DOI: 10.1371/journal.pone.0265059

22. Nikiforov V.S., Nikishchenkova Yu.V. Current Opportunities of Speckle Tracking Echocardiography in Clinical Practice. Racional`naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology 2017;13(2):248–55. (In Russ.). DOI: 10.20996/1819-6446-2017-13-2-248-255

23. Fukuda Y., Tanaka H., Ryo-Koriyama K. et al. Comprehensive functional assessment of right-sided heart using speckle tracking strain for patients with pulmonary hypertension. Echocardiography 2016;33(7):1001–8. DOI: 10.1111/echo.13205

24. Jenei C., Kádár R., Balogh L. et al. Role of 3D echocardiography-determined atrial volumes in distinguishing between pre-capillary and post-capillary pulmonary hypertension. ESC Heart Fail 2021;8(5):3975–83. DOI: 10.1002/ehf2.13496

25. Maffessanti F., Muraru D., Esposito R. et al. Age-, body size- and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging 2013;6(5):700–10. DOI: 10.1161/CIRCIMAGING.113.000706

26. Muraru D., Spadotto V., Cecchetto A. et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging 2016;17(11):1279–89. DOI: 10.1093/ehjci/jev309

27. Tello K., Wan J., Dalmer A. et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging 2019;12(9):e009047. DOI: 10.1161/CIRCIMAGING.119.009047

28. Marra A.M., Halank M., Benjamin N. et al. Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study). Respir Res 2018;19(1):258. DOI: 10.1186/s12931-018-0957-y


Review

For citations:


Klimenko A.A., Bogdanova A.A., Mareeva V.A. Modern possibilities of echocardiographic diagnosis in pulmonary arterial hypertension. The Clinician. 2024;18(4):44-58. (In Russ.) https://doi.org/10.17650/1818-8338-2024-18-4-K729

Views: 240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8338 (Print)
ISSN 2412-8775 (Online)