Socio-economic modeling of the effect of smokers’ transition to smokeless technologies
https://doi.org/10.17650/1818-8338-2022-16-3-K672
Abstract
Research objective: Quantitative estimation of social-demographic and social-economic impact of the switch of traditional cigarettes smoking to modified risk tobacco products consumption, based on effect upon smoking-related mortality and diseases rates.
Methods. Target group – consumers of smoking tobacco: conventional cigarettes (CC) and modified risk tobacco products (MRTP). Base of calculations – analysis of available time series for: CC and MRTP consumption, life expectancy and healthy life expectancy coefficients, statistics on smoking-related mortality and diseases rates, including data on key nosologies (malignant neoplasms of respiratory system, digestive organs, urinary tract; chronic obstructive pulmonary disease; circulatory diseases; cerebrovascular diseases.
Results. We implemented prognoses for all the above mentioned parameters to year 2035, calculated direct medical and indirect costs for demographic and economic loss with attention to budget impact analysis, developed five scenarios based on different CC and MRTP consumption.
The model of switching from CC to MRTP consumption proves a significant decline of demographic and economic burden even with rather modest MRTP replacement for CC. With current practices of switching from CC to MRTP remaining, during 2021–2035 summary impact would result in 3.6 mln of years saved, 7.7 mln of healthy years saved, 120 thous. of mortal cases and 345 thous. diseases cases prevented. The economic burden would be 3.3 trillion rubles lower.
Conclusion. Smoking cessation is the optimal method to reduce health risks, and state policy for stimulation of smoking quitting is necessary. Along with that, transition from CC to MRTP may be an alternative way to reduce health risks for those smokers with long smoking history and either psychological or physiological causes who cannot quit smoking.
Even small in the terms of percent transition from CC to MRTP may result in significant decrease of demographic and economic burden on the national scale.
About the Authors
N. A. KoryaginaRussian Federation
Natalia Alexandrovna Koryagina
39 Kuibyshev St., Perm, Perm Territory 614070, Russia
A. N. Zhigulev
Russian Federation
15 Bauman St., Perm, Perm Territory 614066, Russia
A. N. Zabotina
Russian Federation
44 Bolshaya Serpukhovskaya St., Moscow 119421, Russia
R. O. Dreval
Russian Federation
44 Bolshaya Serpukhovskaya St., Moscow 119421, Russia
K. Y. Muravyeva
Russian Federation
7 Bibliotechnaya St., Moscow 199034, Russia
References
1. Polosa R., Morjaria J.B., Prosperini U. et al. COPD smokers who switched to e-cigarettes: health outcomes at 5-year follow up. Therapeutic Advances in Chronic Disease 2020;11: 2040622320961617. DOI: 10.1177/2040622320961617
2. Khaltourina D.A., Zamiatnina E.S., Zubkova T.S. The impact of smoking on mortality in Russia in 2019. Demograficheskoe obozrenie = Demographic Review 2021;8(1):81–105 (In Russ.). DOI: 10.17323/demreview.v8i1.12394
3. Scherübl H. Tabakrauchen und Krebsrisiko. DMW – dtsch medizinische wochenschrift 2021;146(6):412–7. PMID: 33735927. DOI: 10.1055/a-1216-7050
4. Zhu D., Zhao G., Wang X. Association of smoking and smoking cessation with overall and cause-specific mortality. Am J Prev Med 2021;60(4):504–12. DOI: 10.1016/j.amepre.2020.11.003
5. Jha P. Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer 2009;9(9):655–64. DOI: 10.1038/nrc2703
6. Cunningham A., Sommarström J., Camacho O.M. et al. A longitudinal study of smokers exposure to cigarette smoke and the effects of spontaneous product switching. Regul Toxicol Pharmacol 2015;72(1):8–16. DOI: 10.1016/j.yrtph.2015.03.004
7. Longitudinal Household Survey / RLMS-HSE [Electronic resource] URL: https://www.hse.ru/rlms/ (accessed: 21.12.2021)
8. Stephens W.E. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob Control. 2017. Aug 4. PMID: 28778971. DOI: 10.1136/tobaccocontrol-2017-053808
9. Mitova M.I., Campelos P.B., Goujon-Ginglinger C.G. et al. Comparison of the impact of the tobacco heating system 2.2 and a cigarette on indoor air quality. Regul Toxicol Pharmacol 2016;80:91–101. PMID: 27311683. DOI: 10.1016/j.yrtph.2016. 06.005
10. Slob W., Soeteman-Hernández L.G., Bil W. et al. A method for comparing the impact on carcinogenicity of tobacco products: a case study on heated tobacco versus cigarettes. Risk Anal 2020;40(7):1355–66. PMID: 32356921. DOI: 10.1111/risa.13482
11. Layden J.E., Ghinai I., Pray I. et al. Pulmonary illness related to e-cigarette use in illinois and wisconsin – final report. N Engl J Med 2020;382(10):903–16. PMID: 31491072. DOI: 10.1056/NEJMoa1911614
12. Christiani D.C. Vaping-induced acute lung injury. N Engl J Med 2020;382(10):960–2. PMID: 31491071. DOI: 10.1056/NEJMe1912032
13. Lee P.N., Fry J.S., Hamling J.F. et al. Estimating the effect of differing assumptions on the population health impact of introducing a reduced risk tobacco product in the USA. Regul Toxicol Pharmacol 2017;88:192–213. PMID: 28651854. DOI: 10.1016/j.yrtph.2017.06.009
14. Lee P.N., Abrams D., Bachand A. et al. Estimating the population health impact of recently introduced modified risk tobacco products: a comparison of different approaches. Nicotine Tob Res 2021;23(3):426–37. DOI: 10.1093/ntr/ntaa102
15. Hill A., Camacho O.M. A system dynamics modelling approach to assess the impact of launching a new nicotine product on population health outcomes. Regul Toxicol Pharmacol 2017;86:265–78. DOI: 10.1016/j.yrtph.2017.03.012
16. Tengs T.O., Osgood N.D., Lin T.H. Public Health Impact of Changes in Smoking Behavior. Med Care 2001;39(10):1131–41. DOI: 10.1097/00005650-200110000-00010
17. Poland B., Teischinger F. Population modeling of modified risk tobacco products accounting for smoking reduction and gradual transitions of relative risk. Nicotine Tob Res 2017;19(11):1277–83. DOI: 10.1093/ntr/ntx070
18. Weitkunat R., Lee P.N., Baker G. et al. A novel approach to assess the population health impact of introducing a modified risk tobacco product. Regul Toxicol Pharmacol 2015;72(1):87–93. DOI: 10.1016/j.yrtph.2015.03.011
19. Khabriev R.U., Yagudina R.I., Kulikov A.Yu. et al. Comparative evaluation of the economic consequences of tobacco smoking in the Russian Federation (from 2009 to 2018). Farmakoekonomika: teoriya i praktika = Pharmacoeconomics: theory and practice 2019;7(3):17–21 (In Russ.). DOI: 10.30809/phe.3.2019.3
20. Radchenko E.V., Kolbin A.S. Comparative modeling of socioeconomic burden among smokers, nonsmokers and former smokers. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya = Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology 2019;12(2): 65–71 (In Russ.). DOI: 10.17749/2070-4909.2019.12.2.65-71
21. Savina A.A., Feyginova S.I. Dynamics in incidence of diseases of the circulatory system among adults in the Russian Federation in 2007–2019. Social’nye aspekty zdorov’a naselenia = Social aspects of population health [serial online] 2021;67(1):1 (In Russ). DOI: 10.21045/2071-5021-2021-67-2-1
22. Postnikova L.B., Kostrov V.A., Boldina M.V. et al. Prevalence of chronic obstructive pulmonary disease in a large industrial city (Nizhny Novgorod). Pulmonologiya = Pulmonology 2011;2:5–8 (In Russ.). DOI: 10.18093/0869-0189-2011-0-2-5-8
23. GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396(10258):1160–203. DOI: 10.1016/S0140-6736(20)30977-6
Review
For citations:
Koryagina N.A., Zhigulev A.N., Zabotina A.N., Dreval R.O., Muravyeva K.Y. Socio-economic modeling of the effect of smokers’ transition to smokeless technologies. The Clinician. 2022;16(3):34-47. (In Russ.) https://doi.org/10.17650/1818-8338-2022-16-3-K672