Role of myeloperoxidase in atrial fibrillation and ischemic heart disease
https://doi.org/10.17650/1818-8338-2022-16-3-K664
Abstract
Atrial fibrillation and ischemic heart disease are the key problems in cardiology. Despite of numerous clinical trials and researches underlying molecular biology remains uncertain. Atrial fibrillation and ischemic heart disease are often combined. During ischemic heart disease progression myocardial tissue structure are changing which lead to structural and electrophysiological remodeling and promote atrial fibrillation. It has been shown a crucial role of oxidative stress and chronic systemic inflammation in ischemic heart disease and atrial fibrillation. Myeloperoxidase (MPO) is one of marker of oxidative stress and inflammation that located in azurophilic granules of neutrophils and monocytes. There are a numerous articles showed a relation between MPO level and cardiovascular disease. MPO is a peroxidase enzyme that is important part of immune system. During disease MPO could facilitate chronic inflammation and local tissue damage through active oxygen forms. MPO releases after lysosome conjunction with phagosome. Oxygen reductase activity of MPO lead synthesis of hypochlorous acid that play role not only in organism protection from infection agents but in matrix transformation and fibrosis. It has been shown MPO can destabilize atherosclerotic plaque and modifies low- and high-density lipoproteins that promote atherosclerosis and ischemic heart diseaseу progression. This review summarizes current data about role of MPO in atrial fibrillation and ischemic heart disease pathogenesis.
About the Authors
G. F. BunenkovaRussian Federation
Gulnara Fizulievna Bunenkova
6, Akademika Lebedev St., 194044, St. Petersburg, Russia
S. P. Salikova
Russian Federation
6, Akademika Lebedev St., 194044, St. Petersburg, Russia
V. B. Grinevich
Russian Federation
6, Akademika Lebedev St., 194044, St. Petersburg, Russia
E. S. Ivanyuk
Russian Federation
6, Akademika Lebedev St., 194044, St. Petersburg, Russia
References
1. Hindricks G., Potpara T., Dagres N. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for CardioThoracic Surgery (EACTS). Eur Heart J 2021;42(5):373–98. DOI:10.1093/eurheartj/ehaa612
2. Kolbin A.S., Mosikyan A.A., Tatarsky B.A. Socioeconomic burden of atrial fibrillations in russia: seven-year trends (2010–2017). Vestnik aritmologii = Journal of Arrhythmology 2018;92:42–8. (In Russ.)]. DOI:10.25760/VA-2018-92-42-48.
3. Mareev Yu.V., Polyakov D.S., Vinogradova N.G. Epidemiology of atrial fibrillation in a representative sample of the European part of the Russian Federation. Analysis of EPOCH-CHF study. Kardiologiya = Kardiologiia 2022;62(4):12–9. (In Russ.)
4. Bhatla A., Mayer M., Adusumalli S. et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020;17(9):1439–44. DOI: 10.1016/j.hrthm.2020.06.016
5. Li Z, Shao W., Zhang J. et al. Prevalence of atrial fibrillation and associated mortality among hospitalized patients with COVID-19: A systematic review and meta-analysis. Front Cardiovasc Med 2021;8:720129. DOI: 10.3389/fcvm.2021.720129
6. Duckheim M., Schreieck J. COVID-19 and cardiac arrhythmias. Hamostaseologie 2021;41(5):372–8. DOI: 10.1055/a-1581-6881
7. Berger W.R., Meulendijks ER., Limpens J. et al. Persistent atrial fibrillation: A systematic review and meta-analysis of invasive strategies. Int J Cardiol 2019;278:137–43. DOI: 10.1016/j.ijcard.2018.11.127.
8. Mazur E.S., Mazur V.V., Bazhenov N.D. Risk of cardiovascular complications in patients with persistent atrial fibrillation after dissolution of a thrombus in the left atrial appendage. Kardiologiya = Kardiologiia 2021;61(5):17–22 (In Russ.). DOI: 10.18087/cardio.2021.5.n1463
9. Ylli D., Wartofsky L., Burman K.D. Evaluation and treatment of amiodarone-induced thyroid disorders. J Clin Endocrinol Metab 2021;106(1):226–36. DOI: 10.1210/clinem/dgaa686.
10. Colunga Biancatelli R.M., Congedo V., Calvosa L. et al. Adverse reactions of Amiodarone. J Geriatr Cardiol 2019;16(7):552–66. DOI: 10.11909/j.issn.1671-5411.2019.07.004.
11. Huo Y., Gaspar T., Pohl M. et al. Prevalence and predictors of low voltage zones in the left atrium in patients with atrial fibrillation. Europace 2018;20(6):956–62. DOI: 10.1093/europace/eux082.
12. Holzwirth E., Kornej J., Erbs S. et al. Myeloperoxidase in atrial fibrillation: association with progression, origin and influence of renin-angiotensin system antagonists. Clin Res Cardiol 2020;109(3):324–30. DOI: 10.1007/s00392-019-01512-z
13. Ndrepepa G. Myeloperoxidase – а bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta 2019;493:36–51. DOI: 10.1016/j.cca.2019.02.022.
14. Malecki C., Hambly B.D., Jeremy R.W. et al. The role of inflammation and myeloperoxidase-related oxidative stress in the pathogenesis of genetically triggered thoracic aortic aneurysms. Int J Mol Sci 2020;21(20):7678. DOI: 10.3390/ijms21207678
15. Panasenko O.M., Mikhalchik E.V., Sokolov A.V. The effects of antioxidants and hypohalous acid scavengers on neutrophil activation by hypochlorous acid-modified low-density lipoproteins. Biofizik = Biophysics 2016:61(3):500–9 (In Russ.) DOI: 10.1134/S0006350916030131.
16. Tjondro H.C., Ugonotti J., Kawahara R. et al. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021;296:100144. DOI:10.1074/jbc.RA120.016342
17. Frangie C., Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed Rep 2022;16(6):53. DOI:10.3892/br.2022.1536
18. Sokolov A.V., Kostevich V.A., Gorbunov N.V.A link between active myeloperoxidase and chl et al. orinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medicinskaya Immunologiya = Medical Immunology (Russia). 2018;20(5):699–710. (In Russ.). DOI: 10.15789/1563-0625-2018-5-699-710.
19. Arnhold J. The dual role of Myeloperoxidase in immune response. Int J Mol Sci 2020;21(21):8057. DOI: 10.3390/ijms21218057
20. Bunenkov N.S. Komok V.V. Sokolov A.V. et al. New methods of intraoperative evaluation of myocardial ischemic-reperfusion injury during onand off-pump coronary artery bypass grafting. Klinicheskaya i ehksperimentalnaya hirurgiya zhurnal imeni akademika B.V. Petrovskogo = Clinical and experimental surgery. Journal named after Academician B.V. Petrovsky 2017;5(2(16)): 40–8. (In Russ).
21. Davies M.J., Hawkins C.L. The role of Myeloperoxidase in biomolecule modification, chronic inflammation, and disease. antioxid redox signal 2020;32(13):957–81. DOI: 10.1089/ars.2020.8030.
22. Kakoullis L, Parperis K, Papachristodoulou E. et al. Infectioninduced myeloperoxidase specific antineutrophil cytoplasmic antibody (MPO-ANCA) associated vasculitis: A systematic review. Clin Immunol 2020;220:108595. DOI: 10.1016/j.clim.2020.108595.
23. Pahwa R., Modi P., Jialal I. Myeloperoxidase Deficiency, 2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 29262241.
24. Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 2018;640:47–52. DOI: 10.1016/j.abb.2018.01.004.
25. Koop A.C., Thiele N.D., Steins D. et al. Therapeutic Targeting of Myeloperoxidase Attenuates NASH in Mice. Hepatol Commun 2020;4(10):1441–58. DOI:10.1002/hep4.1566.
26. Hawkins C.L., Davies M.J. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammationinduced tissue damage. Free Radic Biol Med 2021;172:633–51. DOI: 10.1016/j.freeradbiomed.2021.07.007.
27. Luetkens J.A., Wolpers A.C., Beiert T. et al. Cardiac magnetic resonance using late gadolinium enhancement and atrial T1 mapping predicts poor outcome in patients with atrial fibrillation after catheter ablation therapy. Sci Rep 2018;8(1):13618. DOI:10.1038/s41598-018-31916-2
28. Sohns C., Marrouche N.F. Atrial fibrillation and cardiac fibrosis. Eur Heart J 2020;41(10):1123–31. DOI: 10.1093/eurheartj/ehz786.
29. Lubbers E.R., Price M.V., Mohler P.J. Arrhythmogenic Substrates for Atrial Fibrillation in Obesity. Front Physiol 2018;22;9:1482. DOI: 10.3389/fphys.2018.01482
30. Liu Y., Shi Q., Ma Y. et al. The role of immune cells in atrial fibrillation. J Mol Cell Cardiol 2018;123:198–208. DOI 10.1016/j.yjmcc.2018.09.007
31. Wang P., Cheng M, Wang P. et al. SNP rs2243828 in MPO associated with myeloperoxidase level and atrial fibrillation risk in Chinese Han population. J Cell Mol Med 2020;24(17):10263–6. DOI: 10.1111/jcmm.15644
32. El Kazzi M., Rayner B.S., Chami B. et al. Neutrophil-mediated cardiac damage after acute myocardial infarction: Significance of defining a new target cell type for developing cardioprotective drugs. Antioxid Redox Signal 2020;33(10):689–712. DOI:10.1089/ars.2019.7928
33. Sultan A., Wörmann J., Lüker J. et al. Significance of myeloperoxidase plasma levels as a predictor for cardiac resynchronization therapy response. Clin Res Cardiol 2021;110(8):1173–80. DOI: 10.1007/s00392-020-01690-1
34. Chaugai S., Meng W.Y., Ali Sepehry A. Effects of RAAS Blockers on Atrial Fibrillation Prophylaxis: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Cardiovasc Pharmacol Ther 2016;21(4):388–404. DOI: 10.1177/1074248415619490
35. Zhou X., Dudley S.C.Jr. Evidence for inflammation as a driver of atrial fibrillation. Front Cardiovasc Med 2020;7:62. DOI: 10.3389/fcvm.2020.00062.
36. Avagimyan A.A., Mkrtchyan L.G., Navasardyan G.A. et al. The role of Helicobacter pylori in cardiovascular toxicity mechanisms. Rossijskij Kardiologicheskij Zhurnal = Russian Journal of Cardiology 2019;(12):169–74. (In Russ.). DOI:10.15829/1560-4071-2019-12-169-174
37. Chaulin A.M., Grigoryeva Yu.V., Duplyakov D.V. Modern views about the pathophysiology of atherosclerosis. part 1. the role of impaired lipid metabolism and endothelial dysfunction (literature review). Medicina v Kuzbasse = Medicine in Kuzbass 2020; (2): 34–41. (In Russ.)]. DOI: 10.24411/2687-0053-2020-10015
38. Khine H.W., Teiber J.F., Haley R.W. et al. Association of the serum myeloperoxidase / high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study. Atherosclerosis 2017;263:156–62. DOI: 10.1016/j.atherosclerosis.2017.06.007
39. Khosravi M., Poursaleh A., Ghasempour G. et al. The effects of oxidative stress on the development of atherosclerosis. Biol Chem 2019;400(6):711–32. DOI: 10.1515/hsz-2018-0397
40. Obama T., Itabe H. Neutrophils as a novel target of modified lowdensity lipoproteins and an accelerator of cardiovascular diseases. Int J Mol Sci 2020;21(21):8312. DOI:10.3390/ijms21218312
41. Rashid I., Maghzal G.J., Chen Y.C. et al. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur Heart J 2018;39(35):3301–10. DOI: 10.1093/eurheartj/ehy419
42. Chaikijurajai T., Tang W.H.W. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Expert Opin Ther Targets 2020;24(7):695–705. DOI: 10.1080/14728222.2020.1762177
43. Tong W., Hui H., Shang W. et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics 2021;11(2):506–21. DOI:10.7150/thno.49812
44. Teng N., Maghzal G.J., Talib J. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2017;22(2):51–73. DOI:10.1080/13510002.2016.1256119
45. Rudolph T.K., Fuchs A., Klinke A. et al. Prasugrel as opposed to clopidogrel improves endothelial nitric oxide bioavailability and reduces platelet-leukocyte interaction in patients with unstable angina pectoris: A randomized controlled trial. Int J Cardiol 2017;248:7–13. DOI: 10.1016/j.ijcard.2017.06.099
46. Antyufeeva O.N., Budanova D.A., Ilgisonis I.S. et al. Assessment of the dynamics of oxidative stress indicators and early markers of myocardial damage and dysfunction in patients with aggressive lymphoproliferative diseases during of anticancer therapy. Kardiologiya = Kardiologiia 2020;60(12):76–82. (In Russ.) DOI: 10.18087/cardio.2020.12.n1394.
47. Kolodziej A.R., Abo-Aly M., Elsawalhy E. Prognostic role of elevated myeloperoxidase in patients with acute coronary syndrome: A Systemic Review and Meta-Analysis. Mediators Inflamm 2019;2019:2872607. DOI: 10.1155/2019/2872607
48. Goldmann B.U., Rudolph V., Rudolph T.K. Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radic Biol Med 2009;47(1):79–83. DOI: 10.1016/j.freeradbiomed.2009.04.004
49. Schahab N., Mansuroglu S., Schaefer C. Prognostic value of myeloperoxidase in patients with peripheral artery disease. Vascular 2021;29(3):363–71. DOI: 10.1177/1708538120957491
50. Chen L.Q., Rohatgi A., Ayers C.R. et al. Race-specific associations of myeloperoxidase with atherosclerosis in a population-based sample: the Dallas Heart Study. Atherosclerosis 2011;219(2):833–8. DOI: 10.1016/j.atherosclerosis.2011.08.029
Review
For citations:
Bunenkova G.F., Salikova S.P., Grinevich V.B., Ivanyuk E.S. Role of myeloperoxidase in atrial fibrillation and ischemic heart disease. The Clinician. 2022;16(3):18-24. (In Russ.) https://doi.org/10.17650/1818-8338-2022-16-3-K664