Preview

The Clinician

Advanced search

Spondyloarthritis: aspects of pathogenesis and diagnostics

https://doi.org/10.17650/1818-8338-2019-13-3-4-10-14

Abstract

Spondyloarthritis (SpA) has extremely high social importance due to patient’s risk of early disability and a persistent decline in the quality of life. The last decade has brought important knowledge on its genetic mechanisms and pathophysiological aspects, as well as diagnosis and treatment. Axial spondyloarthritis (axSpA) is characterized by a pathological tissue response to immune and mechanical triggers, predominant lesion of the axial skeleton (spine, sacroiliac joints). It is divided into ankylosing spondylitis (AS) and non-radiological axSpA. Mechanical stress is proven to affect specific localization of inflammation and tissue damage in SpA. Areas of inflammation and erosion are limited to those having increased susceptibility and unique microanatomy. It is shown that a number of genes located outside the main histocompatibility complex significantly affect susceptibility to AS. A study of genes and polymorphisms not related to HLA-B27 revealed different pathogenesis mechanisms in various ethnic groups and formed a new understanding of AS pathogenesis and treatment. A family history of AS or anterior uveitis is useful to detect axSpA, as it is associated with the carrier of genetic marker HLA-B27. Researchers are strongly focused on studying AS patients» autoantibodies, where antibodies to CD74 are of the greatest diagnostic value. An imbalanced microbiome can trigger SpA development. Approximately 50 % of all SpA patients have microscopic signs of intestinal inflammation. The development and use of highly sensitive imaging methods in the future will lead to improved approaches for axSpA classification and more precise disease prognosis and therapeutic decisions. 18-fluorodeoxyglucose positron emission tomography is a sensitive method to determine syndesmophytes and sacroiliac joints in axSpA patients.

About the Authors

N. A. Shostak
Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Department of Faculty Therapy named after Academician A. I. Nesterov

1 Ostrovityanova St., Moscow 117997



N. G. Pravdyuk
Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Department of Faculty Therapy named after Academician A. I. Nesterov

1 Ostrovityanova St., Moscow 117997



References

1. Rudwaleit M. New approaches to diagnosis and classification of axial and peripheral spondyloarthritis. Curr Opin Rheumatol 2010;22(4):375–80. DOI: 10.1097/bor.0b013e32833ac5cc.

2. Cambré I., Gaublomme D., Burssens A. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat Commun 2018;9(1):4613. DOI: 10.1038/s41467-018-06933-4.

3. Klein-Nulend J., Bacabac R.G., Mullender M.G. Mechanobiology of bone tissue. Pathol Biol 2005;53(10):576–80. DOI: 10.1016/j.patbio.2004.12.005.

4. Ez-Zaitouni Z., Hilkens A., Gossec L. et al. Is the current ASAS expert definition of a positive family history useful in identifying axial spondyloarthritis? Results from the SPACE and DESIR cohorts. Arthritis Res Ther 2017;19(1):118. DOI: 10.1186/s13075-017-1335-8.

5. Breban M., Said-Nahal R., Hugot J.P., Miceli-Richard C. Familial and genetic aspects of spondyloarthropathy. Rheum Dis Clin North Am 2003;29(3):575–94. DOI: 10.1016/s0889-857x(03)00029-2.

6. Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC). Burton P.R., Clayton D.G., Cardon L.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007;39(11):1329–37. DOI: 10.1038/ng.2007.17.

7. Cai G., Wang L., Fan D. et al. Vitamin D in ankylosing spondylitis: review and meta-analysis. Clin Chim Acta 2015;438:316–22. DOI: 10.1016/j.cca.2014.08.040.

8. Pokhai G.G., Bandagi S., Abrudescu A. Vitamin D levels in ankylosing spondylitis: does deficiency correspond to disease activity? Rev Bras Reumatol 2014;54(4):330–4. DOI: 10.1016/j.rbr.2014.03.027.

9. Ziade N.R., Mallak I., Merheb G. et al. Added value of anti-CD74 autoantibodies in axial spondyloarthritis in a population with low HLA-B27 prevalence. Front Immunol 2019;10:574. DOI: 10.3389/fimmu.2019.00574.

10. De Winter J.J., van de Sande M.G., Baerlecken N. et al. Anti-CD74 antibodies have no diagnostic value in early axial spondyloarthritis: data from the spondyloarthritis caught early (SPACE) cohort. Arthritis Res Ther 2018;20(1):38. DOI: 10.1186/s13075-018-1535-x.

11. Sakellariou G.T., Iliopoulos A., Konsta M. et al. Serum levels of Dkk-1, sclerostin and VEGF in patients with ankylosing spondylitis and their association with smoking, and clinical, inflammatory and radiographic parameters. Joint Bone Spine 2017;84(3):309–15. DOI: 10.1016/j.jbspin.2016.05.008.

12. Heiland G.R., Appel H., Poddubnyy D. et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 2012;71(4):572–4. DOI: 10.1136/annrheumdis-2011-200216.

13. Hammer R.E., Maika S.D., Richardson J.A. et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 2m: an animal model of HLA-B27-associated human disorders. Cell 1990;63(5):1099–112. DOI: 10.1016/0092-8674(90)90512-D.

14. Costello M.E., Ciccia F., Willner D. et al. Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis. Arthritis Rheumatol 2015;67(3):686–91. DOI: 10.1002/art.38967.

15. Gomez-Simmonds A., Uhlemann A.C. Clinical implications of genomic adaptation and evolution of carbapenemresistant Klebsiella pneumoniae. J Infect Dis 2017;215(Suppl. 1):18–27. DOI: 10.1093/infdis/jiw378.

16. Jacques P., Elewaut D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol 2008;1(5):364–71. DOI: 10.1038/mi.2008.24.

17. Tito R.Y., Cypers H., Joossens M. Brief Report: Dialisteras a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis Rheumatol. 2017;69(1):114–21. DOI: 10.1002/art.39802.

18. Breban M., Tap J., Leboime A. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 2017;76(9):1614–22. DOI: 10.1136/annrheumdis-2016-211064.

19. Bochkova A.G., Levshakova A.V. MRI criteria for a reliable sacroiliitis diagnosis (ASAS/OMERACT recommendations and own data). Sovremennaya revmatologiya = Modern Rheumatology Journal 2010;4(1):12–7. (In Russ.).

20. De Winter J., de Hooge M., van de Sande M. et al. Magnetic Resonance Imaging of the Sacroiliac Joints Indicating Sacroiliitis According to the Assessment of SpondyloArthritis international Society Definition in Healthy Individuals, Runners, and Women With Postpartum Back Pain. Arthritis Rheumatol 2018;70(7):1042–8. DOI: 10.1002/art.40475.

21. Diekhoff T., Hermann K.G., Greese J. et al. Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann Rheum Dis 2017;76(9):1502–8. DOI: 10.1136/annrheumdis-2016-210640.

22. Ziegeler K., Eshkal H., Schorr C. et al. Age- and sex-dependent frequency of fat metaplasia and other structural changes of the sacroiliac joints in patients without axial spondyloarthritis: a retrospective, cross-sectional MRI study. J Rheumatol 2018;45(7):915–21. DOI: 10.3899/jrheum.170904.

23. Toussirot E., Caoduro C., Ungureanu C. et al. 18F-fluoride PET/CT assessment in patients fulfilling the clinical arm of the ASAS criteria for axial spondyloarthritis. A comparative study with ankylosing spondylitis. Clin Exp Rheumatol 2015;33(4):588.


Review

For citations:


Shostak N.A., Pravdyuk N.G. Spondyloarthritis: aspects of pathogenesis and diagnostics. The Clinician. 2019;13(3-4):10-14. (In Russ.) https://doi.org/10.17650/1818-8338-2019-13-3-4-10-14

Views: 7915


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-8338 (Print)
ISSN 2412-8775 (Online)