SUBCLINICAL INTERSTITIAL PULMONARY INJURY IN RHEUMATOID ARTHRITIS
https://doi.org/10.17650/1818-8338-2015-1-30-36
Abstract
Subjects and methods. The study enrolled 61 inpatients diagnosed with RA (according to the 1987 American College of Rheumatology criteria) who were treated at the V.A. Nasonova Research Institute of Rheumatology; in so doing, high-resolution computed tomography revealed lung changes as a ground glass pattern in 15 patients, reticular striation, traction bronchoectases, and lung tissue changes as honeycomb ones in 25 patients; no lung abnormalities were found in 21 patients. DAS28 was applied to determine the inflammatory activity of RA. The RA patients underwent X-ray studies of the hand, foot, and chest, by using accordingly X-Ray unit and spiral computed tomography scanner (section thickness, 0.65 mm). External respiration function (ERF) indicators were studied with plethysmograph. IgM rheumatoid factor was measured using an immune nephelometer. Serum anti-cyclic citrullinated peptide antibodies were assayed by immunochemiluminescence technique on a Cobas e411 analyzer. The xMAP technology using a BioPlex200 analyzer was employed to determine the serum concentrations of 27 cytokines in 15 patients with subclinical IPI and in 25 with clinical IPI.
Results and discussion. The major respiratory signs in patients with IPI proved to be cough (24 %), expectoration (20 %), dyspnea (16 %), and crepitation (64 %) on auscultation. Three patients with subclinical IPI were found to have crepitation on auscultation. Respiratory symptoms were absent in the RA patients without IPI. It should be noted that there are a larger number of RA patients with a high smoking index among the RA patients with IPI than among those without IPI (p < 0.05). Investigation of ERF indicators revealed a statistically significantly lower lung diffusing capacity (LDC) in the RA patients with subclinical IPI than in those without IPI (p < 0.05). Other ERF indicators showed no significant deviations of the reference values. LDC and total lung capacity appeared to be statistically significantly lower in the RA patients with clinical IPI than in those without IPI (p < 0.005 and p < 0.05, respectively). The differences in LDC failed to reach the statistical significance in the RA patients with subclinical IPI and in those with clinical IPI. Examination of cytokine concentrations revealed a tendency towards the higher levels of interleukin-7 (IL-7), IL-12, IL-13, IL-15, IL-17, and platelet-derived growth factor BB in the RA patients with subclinical IPI than in those with clinical IPI. At the same time, the differences in the concentration of vascular endothelial growth factor (VEGF) turned out to be statistically significant (p < 0.05). Moreover, the levels of IL-10, interferon-γ, and RANTES proved to be significantly higher in the patients with clinical IPI than in those with subclinical IPI (p < 0.008; p < 0.0003, and p < 0.03, respectively).
Conclusion. Thus, the problem associated with the early diagnosis and timely adequate treatment of IPI in patients with RA is relevant. The preclinical form of IPI in patients with RA is associated with ground glass radiological and tomographic patterns and lower LDC values. VEGF may lay a claim to the role of a predictor of pulmonary fibrosis in the RA patients with subclinical IPI.
About the Authors
D. V. BestaevRussian Federation
L. A. Bozhyeva
Russian Federation
A. V. Volkov
Russian Federation
A. A. Novikov
Russian Federation
S. I. Glukhova
Russian Federation
E. L. Nasonov
Russian Federation
References
1. Насонов Е.Л. Ревматоидный артрит как общемедицинская проблема. Терапевтческий архив 2004;76(5):5–7. [Nasonov E.L. Rheumatoid arthritis as a general medical problem. Terapevticheskiy arhiv = Therapeutic Archive 2004;76(5):5–7. (In Russ.)].
2. Насонов Е.Л., Чичасова Н.В. Рациональная терапия ревматоидного артрита. М.: Миклош, 2010. [Nasonov E.L., Chichasova N.V. Rational therapy of rheumatoid arthritis. Moscow: Miklosh, 2010. (In Russ.)].
3. Jurik A.G., Davidsen D., Graudal H. Prevalence of pulmonary involvement in rheumatoid arthritis and its relationship to some characteristics of the patients. A radiological and clinical study. Scand J Rheumatol 1982;11(4):217–24.
4. Dawson J.K., Fewins H.E., Desmond J. et al. Fibrosing alveolitis in patients with rheumatoid arthritis as assessed by high resolution computed tomography, chest radiography, and pulmonary function tests. Thorax 2001;56(8):622–7.
5. Bongartz T., Nannini C., Medina-Velasquez Y.F. et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. Arthritis Rheum 2010;62(6): 1583–91.
6. Suzuki A., Ohosone Y., Obana M. et al. Cause of death in 81 autopsied patients with rheumatoid arthritis. J Rheumatol 1994;21(1):33–6.
7. Мазуров В.И., Богданов А.Н. Диагностика и лечение поражений легких у больных ревматоидным артритом. Научнопрактическая ревматология 2003;(1):52–6. [Mazurov V.I., Bogdanov A.N. Diagnostics and treatment of lung lesions of patients with rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya = Scientific and Practical Rheumatology 2003;(1):52–6. (In Russ.)].
8. Bernscherer G., Karabelyos C., Tarjan Z. The pulmonological manifestations of rheumatoid arthritis (in Hungarian). Orv Hetil 2008;149(29):1355–61.
9. Saadia M. Interstitial lung disease in rheumatoid arthritis: an update on diagnosis and management. Intern J Clin Rheumatol 2012;7(3):297–308.
10. Gochuico B.R., Avila N.A., Chow C.K. et al. Progressive preclinical interstitial lung disease in rheumatoid arthritis. Arch Intern Med 2008;168(2):159–66.
11. Ascherman D.P. Interstitial lung disease in rheumatoid arthritis. Curr Rheumatol Rep 2010;12(5):363–9.
12. Gizinski A.M., Mascolo M., Loucks J.L. et al. Rheumatoid arthritis (RA)-specific autoantibodies in patients with interstitial lung disease and absence of clinically apparent articular RA. Clin Rheumatol 2009;28(5):611–3.
13. Reynisdottir G., Karimi R., Joshua V. et al. Structural changes and antibody enrichment in the lungs are early features of anticitrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol 2014;66(1):31–9.
14. Demoruelle M.K., Weisman M.H., Derber P.L. et al. Brief report: airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: early injury or initiating site of autoimmunity? Arthritis Rheum 2012;64(6):1756–61.
15. Jones R.S., Meade F. A theoretical and experimental analysis of anomalies in the estimation of pulmonary diffusing capacity by the single breath method. Q J Exp Physiol Cogn Med Sci 1961;46:131–43.
16. Miller M.R., Hankinson J., Brusasco V. et al.; ATS/ERS Task Force. Standardization of spirometry. Eur Resp J 2005;26(2):319–38.
17. Chen J., Shi Y., Wang X. et al. Asymptomatic preclinical rheumatoid arthritis-associated interstitial lung disease. Clin Dev Immunol 2013;2013:406927.
18. Liote H. Pulmonary manifestation of rheumatoid arthritis. Rev Mal Respir 2008;25(8):973–88.
19. Biederer J., Schnabel A., Muhle C. et al. Correlation between HRCT findings, pulmonary function tests and bronchoalveolar lavage cytology in interstitial lung disease associated with rheumatoid arthritis. Eur Radiol 2004;14(2):272–80.
20. Kim E.J., Elicker B.M., Maldonado F. et al. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. Eur Respir J 2010;35(6):1322–8.
21. Kim E.J., Collard H.R., King T.E. Jr. Rheumatoid arthritis-associated interstitial lung disease: the relevance of histopathologic and radiographic pattern. Chest 2009;136(5): 1397–405.
22. Hamblin M.J., Horton M.R. Rheumatoid arthritis-associated interstitial lung disease: diagnostic dilemma. Pulm Med 2011; 2011:872120.
23. Wynn T.A. Fibrotic disease and the T(H)1/ T(H)2 paradigm. Nat Rev Immunol 2004;4(8):583–94.
24. Ramalingam T.R., Pesce J.T., Sheikh F. et al. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol 2008;9(1):25–33.
25. Lupardus P.J., Birnbaum M.E., Garcia K.C. Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL13Ralpha2. Structure 2010;18(3):332–42.
26. Wilson M.S., Elnekave E., Mentink-Kane M. et al. IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airwayhyperreactivity, and fibrosis in mice. J Clin Invest 2007;117(10):2941–51.
27. Simonian P.L., Roark C.L., Wehrmann F. et al. Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 2009;182(1):657–65.
28. Wilson M.S., Madala S.K., Ramalingam T.R. et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 2010;207(3):535–52.
29. Strieter R.M., Belperio J.A., Keane M.P. CXC chemokines in vascular remodeling related to pulmonary fibrosis. Am J Respir Cell Mol Biol 2003;29(3 Suppl):S67–9.
Review
For citations:
Bestaev D.V., Bozhyeva L.A., Volkov A.V., Novikov A.A., Glukhova S.I., Nasonov E.L. SUBCLINICAL INTERSTITIAL PULMONARY INJURY IN RHEUMATOID ARTHRITIS. The Clinician. 2015;9(1):30-36. (In Russ.) https://doi.org/10.17650/1818-8338-2015-1-30-36